Gas Well Deliquification in the Presence of High Content of Condensate: From Laboratory to Field Test

2021 ◽  
Author(s):  
Xiujuan He ◽  
Wei Lei ◽  
Xin Xu ◽  
Jian Xu ◽  
Jun Qiu ◽  
...  

Abstract Two foaming formulations, an amphoteric surfactant (noted as Fam) and a blend of anionic-cationic-amphoteric surfactants (noted as Facam) have been prepared and tested at lab and in field in the presence of high content of condensate (60 vol% on average). Foam height with Facam are close to those with Fam. Although Fam has better foam stability without condensate, the half-life of the foam (t1/2) decreases by 50% in presence of condensate. Foam generated by Facam shows better oil resistance performance due to negative spreading coefficient (S). Liquid unloading efficiency with Facam are close to those with Fam at lab. Nevertheless in field application, Facam is more efficient than Fam for the deliquification in the gas well. The depth of gas well is 2126 m. Foaming formulations were injected respectively from casing pipe with injection amount of 1-2kg/day. The pressure difference between casing and tubing pipes (ΔPc-t) decreased from 1.0 MPa to 0.28 MPa, and the decline of gas production was slowed down after the injection of Facam in the gas well. As a contrast, both theΔPc-t and decline rate of gas production were increased with Fam. Foam resistance to condensate is a factor, while emulsion viscosity is inferred to be another crucial factor for the performance of formulations in the deliquification process.

2012 ◽  
Vol 450-451 ◽  
pp. 1536-1539
Author(s):  
Cui Ping Nie ◽  
Deng Sheng Ye

Abstract: Usually we pay more attention on how to improve gas well cementing quality in engineering design and field operations, and there are so many studies on cement agents but few researches on cement slurry injection technology. The field practice proved that conventional cementing technology can not ensure the cementing quality especially in gas well and some abnormal pressure wells. Most of the study is concentrated on cement agents and some cementing aspects such as wellbore condition, casing centralization etc. All the factors analysis on cementing quality has pointed out that a combination of good agents and suitable measurements can improve cementing quality effectively. The essential factor in cementing is to enhance the displacement efficiency, but normal hole condition and casing centralization are the fundamental for cementing only. Pulsing cementing is the technology that it can improve the displacement efficiency especially in reservoir well interval, also it can shorten the period from initial to ultimate setting time for cement slurry or improve thickening characteristics, and then to inhibit the potential gas or water channeling. Based on systematically research, aiming at improving in 7″ liner cementing, where there are multi gas reservoirs in long interval in SiChuan special gas field, well was completed with upper 7″ liner and down lower 5″ liner, poor cementing bonding before this time. So we stressed on the study of a downhole low frequency self-excited hydraulic oscillation pulsing cementing drillable device and its application, its successful field utilization proved that it is an innovative tool, and it can improve cementing quality obviously.


SPE Journal ◽  
2007 ◽  
Vol 12 (04) ◽  
pp. 397-407 ◽  
Author(s):  
Mashhad Mousa Fahes ◽  
Abbas Firoozabadi

Summary Wettability of two types of sandstone cores, Berea (permeability on the order of 600 md), and a reservoir rock (permeability on the order of 10 md), is altered from liquid-wetting to intermediate gas-wetting at a high temperature of 140C. Previous work on wettability alteration to intermediate gas-wetting has been limited to 90C. In this work, chemicals previously used at 90C for wettability alteration are found to be ineffective at 140C. New chemicals are used which alter wettability at high temperatures. The results show that:wettability could be permanently altered from liquid-wetting to intermediate gas-wetting at high reservoir temperatures,wettability alteration has a substantial effect on increasing liquid mobility at reservoir conditions,wettability alteration results in improved gas productivity, andwettability alteration does not have a measurable effect on the absolute permeability of the rock for some chemicals. We also find the reservoir rock, unlike Berea, is not strongly water-wet in the gas/water/rock system. Introduction A sharp reduction in gas well deliverability is often observed in many low-permeability gas-condensate reservoirs even at very high reservoir pressure. The decrease in well deliverability is attributed to condensate accumulation (Hinchman and Barree 1985; Afidick et al. 1994) and water blocking (Engineer 1985; Cimolai et al. 1983). As the pressure drops below the dewpoint, liquid accumulates around the wellbore in high saturations, reducing gas relative permeability (Barnum et al. 1995; El-Banbi et al. 2000); the result is a decrease in the gas production rate. Several techniques have been used to increase gas well deliverability after the initial decline. Hydraulic fracturing is used to increase absolute permeability (Haimson and Fairhurst 1969). Solvent injection is implemented in order to remove the accumulated liquid (Al-Anazi et al. 2005). Gas deliverability often increases after the reduction of the condensate saturation around the wellbore. In a successful methanol treatment in Hatter's Pond field in Alabama (Al-Anazi et al. 2005), after the initial decline in well deliverability by a factor of three to five owing to condensate blocking, gas deliverability increased by a factor of two after the removal of water and condensate liquids from the near-wellbore region. The increased rates were, however, sustained for a period of 4 months only. The approach is not a permanent solution to the problem, because the condensate bank will form again. On the other hand, when hydraulic fracturing is used by injecting aqueous fluids, the cleanup of water accumulation from the formation after fracturing is essential to obtain an increased productivity. Water is removed in two phases: immiscible displacement by gas, followed by vaporization by the expanding gas flow (Mahadevan and Sharma 2003). Because of the low permeability and the wettability characteristics, it may take a long time to perform the cleanup; in some cases, as little as 10 to 15% of the water load could be recovered (Mahadevan and Sharma 2003; Penny et al. 1983). Even when the problem of water blocking is not significant, the accumulation of condensate around the fracture face when the pressure falls below dewpoint pressure could result in a reduction in the gas production rate (Economides et al. 1989; Sognesand 1991; Baig et al. 2005).


2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881745 ◽  
Author(s):  
Ying Zhang ◽  
Zhanghua Lian ◽  
Mi Zhou ◽  
Tiejun Lin

At the high or extra-high temperatures in a natural gas oilfield, where the premium connection is employed by casing, gas leakage in the wellbore is always detected after several years of gas production. As the viscoelastic material’s mechanical properties change with time and temperature, the relaxation of the contact pressure on the connection sealing surface is the main reason for the gas leakage in the high-temperature gas well. In this article, tension-creep experiments were conducted. Furthermore, a constitutive model of the casing material was established by the Prony series method. Moreover, the Prony series’ shift factor was calculated to study the thermo-rheological behavior of the casing material ranging from 120°C to 300°C. A linear viscoelastic model was implemented in ABAQUS, and the simulation results are compared to our experimental data to validate the methodology. Finally, the viscoelastic finite element model is applied to predict the relaxation of contact pressure on the premium connections’ sealing surface versus time under different temperatures. And, the ratio of the design contact pressure and the intending gas sealing pressure is recommended for avoiding the premium connections failure in the high-temperature gas well.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Zhang Jianwen ◽  
Jiang Aiguo ◽  
Xin Yanan ◽  
He Jianyun

The erosion-corrosion problem of gas well pipeline under gas–liquid two-phase fluid flow is crucial for the natural gas well production, where multiphase transport phenomena expose great influences on the feature of erosion-corrosion. A Eulerian–Eulerian two-fluid flow model is applied to deal with the three-dimensional gas–liquid two-phase erosion-corrosion problem and the chemical corrosion effects of the liquid droplets dissolved with CO2 on the wall are taken into consideration. The amount of erosion and chemical corrosion is predicted. The erosion-corrosion feature at different parts including expansion, contraction, step, screw sections, and bends along the well pipeline is numerically studied in detail. For dilute droplet flow, the interaction between flexible water droplets and pipeline walls under different operations is treated by different correlations according to the liquid droplet Reynolds numbers. An erosion-corrosion model is set up to address the local corrosion and erosion induced by the droplets impinging on the pipe surfaces. Three typical cases are studied and the mechanism of erosion-corrosion for different positions is investigated. It is explored by the numerical simulation that the erosion-corrosion changes with the practical production conditions: Under lower production rate, chemical corrosion is the main cause for erosion-corrosion; under higher production rate, erosion predominates greatly; and under very high production rate, erosion becomes the main cause. It is clarified that the parts including connection site of oil pipe, oil pipe set, and valve are the places where erosion-corrosion origins and becomes serious. The failure mechanism is explored and good comparison with field measurement is achieved.


2014 ◽  
Vol 884-885 ◽  
pp. 104-107
Author(s):  
Zhi Jun Li ◽  
Ji Qiang Li ◽  
Wen De Yan

For the water-sweeping gas reservoir, especially when the water-body is active, water invasion can play positive roles in maintaining formation pressure and keeping the gas well production. But when the water-cone break through and towards the well bottom, suffers from the influencing of gas-water two phase flows, permeability of gas phase decrease sharply and will have a serious impact on the production performance of the gas well. Moreover, the time when the water-cone breakthrough will directly affect the final recovery of the gas wells, therefore, the numerical simulation method is used to conduct the research on the key influencing factors of water-invasion performance for the gas wells with bottom-water, which is the basis of the mechanical model for the typical gas wells with bottom-water. It indicate that as followings: (1) the key influencing factors of water-invasion performance for the gas wells with bottom-water are those, such as the open degree of the gas beds, well gas production and the amount of Kv/Kh value; and (2) the barrier will be in charge of great significance on the water-controlling for the bottom water gas wells, and its radius is the key factor to affect water-invasion performance for the bottom water gas wells where the barriers exist nearby.


2013 ◽  
Vol 712-715 ◽  
pp. 1096-1099
Author(s):  
Ling Feng Li

For natural gas well in sour gas reservoirs, very serious corrosion in the completed well system is an important factor of gas production system life. In order to ensure the long-term development of gas wells, this paper mainly introduces material corrosion prevention technology in the completed well system, such as corrosion-resistant alloy steel corrosion control technology, bimetallic combination tubing, corrosion inhibitor technology and so on. By taking LJ Gas Field as an example, this paper introduces the material corrosion prevention technology in the completed well system in LJ Gas Field. For application in the completed well system in LJ Gas Field, the technology above have good performance of corrosion resistance.


2013 ◽  
Vol 690-693 ◽  
pp. 1516-1519
Author(s):  
Ling Feng Li

For natural gas well in sour gas reservoirs, very serious corrosion in the gas well string is an important factor of gas production system life. In order to ensure the long-term development of gas wells, this paper mainly introduces the tubing and casing corrosion in sour gas reservoirs, corrosion-resistant material selection of tubing and casing in sour gas reservoirs and proposes the optimization idea and technique of tubing material selection.. By taking W 63 well as an example, this paper optimizes the material selection of production casing for W 63 well. For application, the optimal materials of gas well string in W 63 well have good performance of corrosion resistance.


2012 ◽  
Vol 485 ◽  
pp. 429-432
Author(s):  
Ling Feng Li ◽  
Xiao Ming Liu ◽  
Zhi Qiang Huang

For natural gas well with high content of CO2 and H2S, very serious corrosion in the gas well string is an important factor of gas production system life. In order to ensure the long-term development of gas wells, this paper mainly study the corrosion-resistant material selection of tubing and casing in sour gas reservoirs under coexistence of H2S and CO2 and proposes the optimization idea and technique of tubing and casing material selection. By taking Puguang gas field as an example, this paper optimizes the material selection of production casing for Puguang gas field. By testing, the optimal materials of gas well string in Puguang gas field have good performance of erosion resistance


2014 ◽  
Vol 1044-1045 ◽  
pp. 688-691
Author(s):  
Ran Zhang ◽  
Jun Zhou ◽  
Cheng Yong Li

BP neural network has been successfully used in the gas well productivity prediction, but as a result of neural network is sensitive to the number of input parameters, we had to ignore some factors that is less important to the gas well productivity. In addition, the existing various productivity prediction method cannot consider the influence of some important qualitative factors. This article integrated the advantages of fuzzy comprehensive evaluation and BP neural network, fuzzy comprehensive evaluation method is used to construct the BP neural network's input matrix, and BP neural network learning function is used to solve the connection weights, so as to achieve the aim of predicting gas production. This method not only can consider as many factors influence on gas well production, ut also can consider qualitative factors, so the forecast results of the new model are more realistically close to the actual production situation of reservoirs.


SPE Journal ◽  
2016 ◽  
Vol 22 (02) ◽  
pp. 562-581 ◽  
Author(s):  
HanYi Wang

Summary One of the most-significant practical problems with the optimization of shale-gas-stimulation design is estimating post-fracture production rate, production decline, and ultimate recovery. Without a realistic prediction of the production-decline trend resulting from a given completion and given reservoir properties, it is impossible to evaluate the economic viability of producing natural gas from shale plays. Traditionally, decline-curve analysis (DCA) is commonly used to predict gas production and its decline trend to determine the estimated ultimate recovery (EUR), but its analysis cannot be used to analyze which factors influence the production-decline trend because of a lack of the underlying support of physics, which makes it difficult to guide completion designs or optimize field development. This study presents a unified shale-gas-reservoir model, which incorporates real-gas transport, nanoflow mechanisms, and geomechanics into a fractured-shale system. This model is used to predict shale-gas production under different reservoir scenarios and investigate which factors control its decline trend. The results and analysis presented in the article provide us with a better understanding of gas production and decline mechanisms in a shale-gas well with certain conditions of the reservoir characteristics. More-in-depth knowledge regarding the effects of factors controlling the behavior of the gas production can help us develop more-reliable models to forecast shale-gas-decline trend and ultimate recovery. This article also reveals that some commonly held beliefs may sound reasonable to infer the production-decline trend, but may not be true in a coupled reservoir system in reality.


Sign in / Sign up

Export Citation Format

Share Document