Challenging the Status Quo Leads to Enhanced Drilling Performance

2021 ◽  
Author(s):  
Ossama Sehsah ◽  
Oscar Bautista Sayago ◽  
Tom Newman ◽  
Fadi Mounzer

Abstract The technology described in this paper has been developed to challenge the shortcomings of the 40+ year old conventional blade stabilizer. The focus of this paper is to compare drilling performance on two lateral well sections against conventional spiral blade stabilizers. The comparison will highlight the noticeable improvement in drilling performance through analysis of relevant drilling parameters. The new design stabilizer, referred to in this paper as Innovative Drillstring Stabilizer (IDS), can be positioned in the drill string as you would typically do with a conventional spiral blade stabilizer or roller reamer. The design, however, is considerably different. The opened profile, placement and contour of the blades are designed to enhance energy transfer and flow along the tool, improving the transportation of cuttings around the tool while minimizing the occurrences of balling up. The orientation and dome shape of the blades is designed to reduce friction and torque, reduce vibration, improve weight transfer and when slide drilling minimizing the occurrence of hanging up and motor stalls. The engineered drillstring stabilizer was deployed in two wells for trial and technology acceptance purpose. An 8" OD innovative drillstring stabilizer was used as part of a steerable motor bottom hole assembly (BHA) in an integrated operations project. An in-depth performance comparison study was conducted by a specialized and independent third party between two identical BHAs. One (BHA-1), however, included conventional spiral blade stabilizers while the other (BHA-2) adopted the innovative drillstring stabilizers. The pioneering design of the IDS in BHA-2 contributed to reducing the overall torque and aiding in better weight transfer and drilling efficiency. It was possible to apply more weight and the energy transfer to the bit, based on mechanical specific energy (MSE) calculations, showed more efficient drilling conditions. As a result, the ROP, both rotating and sliding showed significant improvement with an overall increase of more than 30%. Better stabilization with BHA-2 aided in less vibration and no motor stalls. In addition, while pulling out of hole, lower hook loads were observed due to the enhanced hole cleaning features, improved hole condition and less friction along the string components. When back on surface no indications of balling-up were observed either. Today, drilling related inefficiencies, in the form of low ROP, non-productive time, damages beyond repair or stuck pipe and lost in hole incidents costs the oil and gas industry millions of dollars on an annual basis. The IDS is designed and proved to address such dysfunctions and improve drilling performance and efficiency while simultaneously stimulates a lower MSE drilling environment.

2013 ◽  
Vol 53 (1) ◽  
pp. 209
Author(s):  
Inge Alme ◽  
Angel Casal ◽  
Trygve Leinum ◽  
Helge Flesland

The BOP is a critical safety system of an offshore drilling rig, as shown in the 2010 Macondo accident. A challenge for the oil and gas industry is to decide what to do when the BOP is failing. Pulling the BOP to the surface during operations for inspection and testing is a costly and timely operation. Many of the potential failures are not critical to overall safety as multiple levels of redundancy are often available. Scandpower and Moduspec, both subsidiaries of Lloyd’s Register, have developed a BOP risk model that will assist the industry make the pull or no pull decisions. Scandpower’s proprietary software RiskSpectrum is used for the modelling. This software is used for equivalent decision support in the nuclear power industry, where the risk levels of total nuclear power plants are monitored live by operators in the control rooms. By modelling existing BOPs and their submerged control systems, and using risk monitor software for keeping track on the status of the BOP subsystems and components, the industry is able to define the real-time operational risk level the BOP is operating at. It, therefore, allows the inclusion for sensitivity modelling with possible faulty components factored in the model. The main task of the risk model is to guide and support energy companies and regulators in the decision process when considering whether to pull the BOP for repairs. Moreover, it will help the communication with the regulators, since the basis for the decisions are more traceable and easier to follow for a third party.


2013 ◽  
Vol 53 (1) ◽  
pp. 127
Author(s):  
Neil Wilds

Corrosion under insulation (CUI) is a serious issue in the oil and gas industry, with failures often occurring without warning and having devastating effect. When expensive redesign is not possible or practical, operators have a number of options open to them to mitigate the risk of CUI; these include the use of various protective coatings or thermally sprayed metals. Despite a number of technologies presently available, the industry is yet to establish an accepted laboratory test method for the performance benchmarking of products. This has, in the past, damaged confidence in some solutions and hampered the selection and further development of CUI coatings. As a result, the subject of accelerated laboratory testing for CUI coatings is now receiving significant attention across the industry with joint industry programs proposed in both Europe and North America. This paper will examine state-of-the-art accelerated CUI testing, evaluating the advantages and disadvantages of the existing methods available. It will then offer a detailed description of a test method that has been in use since 2004, testing more than 300 specimens and assessing a wide range of coating technologies. The reproducibility of the test program will be established by the presentation of a range of data including results obtained from a third-party test house. The third-party results will then be correlated with a seven-year case study from an end user perspective provided by Santos, a major Australian oil and gas exploration and production company, from experiences at their Port Bonython facility in SA.


2016 ◽  
Vol 2016 ◽  
pp. 1-34 ◽  
Author(s):  
Guangjian Dong ◽  
Ping Chen

Drill string vibrations and shocks (V&S) can limit the optimization of drilling performance, which is a key problem for trajectory optimizing, wellbore design, increasing drill tools life, rate of penetration, and intelligent drilling. The directional wells and other special trajectory drilling technologies are often used in deep water, deep well, hard rock, and brittle shale formations. In drilling these complex wells, the cost caused by V&S increases. According to past theories, indoor experiments, and field studies, the relations among ten kinds of V&S, which contain basic forms, response frequency, and amplitude, are summarized and discussed. Two evaluation methods are compared systematically, such as theoretical and measurement methods. Typical vibration measurement tools are investigated and discussed. The control technologies for drill string V&S are divided into passive control, active control, and semiactive control. Key methods for and critical equipment of three control types are compared. Based on the past development, a controlling program of drill string V&S is devised. Application technologies of the drill string V&S are discussed, such as improving the rate of penetration, controlling borehole trajectory, finding source of seismic while drilling, and reducing the friction of drill string. Related discussions and recommendations for evaluating, controlling, and applying the drill string V&S are made.


Author(s):  
Patrick Höhn ◽  
Felix Odebrett ◽  
Carlos Paz ◽  
Joachim Oppelt

Abstract Reduction of drilling costs in the oil and gas industry and the geothermal energy sector is the main driver for major investments in drilling optimization research. The best way to reduce drilling costs is to minimize the overall time needed for drilling a well. This can be accomplished by optimizing the non-productive time during an operation, and through increasing the rate of penetration (ROP) while actively drilling. ROP has already been modeled in the past using empirical correlations. However, nowadays, methods from data science can be applied to the large data sets obtained during drilling operations, both for real-time prediction of drilling performance and for analysis of historical data sets during the evaluation of previous drilling activities. In the current study, data from a geothermal well in the Hanover region in Lower Saxony (Germany) were used to train machine learning models using Random Forest™ regression and Gradient Boosting. Both techniques showed promising results for modeling ROP.


2019 ◽  
Vol 300 ◽  
pp. 04004
Author(s):  
Edris Hassan ◽  
Jamil Abdo ◽  
Jan Kwak ◽  
Abdullah Al Shabibi

Drilling is one of the costliest activities in oil and gas industry due to the complexity of interactions with downhole rock formation. Under such conditions, the uncertainty of drillstring behaviour increase and hence it becomes difficult to predict the causes, occurrences, and types of failures. Lateral and torsional vibrations often cause failure of Bottom Hole Assembly (BHA), drillstring failure, drill bit and wall borehole damages. In this work, a model is presented to determine the impact of lateral and torsional vibrations on a drillstring during the drilling operation. The model aims to mimic real drillstring behaviour inside a wellbore with regards to its dynamic movements due to multiple real situations such as eccentricity of collars, drill pipe sections, and stick-slip phenomena occurring due to the interaction of the bit and the drillstring with the well formation. The work aims to develop a basis for determining critical operating speeds and design parameters to provide safe drilling procedures and reduce drill string fatigue failure. Lagrangian approach is used in this study to attain drillstring lateral and torsional vibration coupling equations. The nonlinear equations are solved numerically to obtain the response of the system. In this work, we also present a brief description of an in-house constructed experimental setup. The setup has the capability to imitate the downhole lateral and torsional vibration modes. Parameters from the experimental investigations are incorporated for validation of the mathematical models and for prediction of the drillstring fatigue life. Such investigations are essential for oil and gas industries as they provide solutions and recommendations about operational speed, lateral and torsional amplitudes measurements and corrections, and the conditions for avoiding occurrence of natural frequencies of the system.


2016 ◽  
Vol 56 (2) ◽  
pp. 540
Author(s):  
Max Goodwin

The International Standard for Environmental Management Systems, ISO 14001 (the Standard), has been around for nearly 20 years and 2015 saw its third revision. Various research papers in the early 2000s showed that adoption of—and certification to—the ISO 14001 standard did not have any significant bearing on organisations’ environmental performance, as measured in terms of the frequency of incidents and legal compliance. In this latest revision it is clear that concerns raised about the Standard have been taken on board, and it now provides for a more rigorous and effective environmental management system, which will ensure greater focus on the actual outcomes of the system, rather than the paperwork and procedures that are often the focus. New areas of focus include: environmental performance evaluation, leadership and commitment, life-cycle thinking, and addressing the needs of external stakeholders. Through experience gained over 20 years of working with the ISO 14001 standard in the oil and gas industry—including 10 years as a third-party certifier—the author discusses the benefits of adopting the revised ISO 14001 standard, and incorporates case study examples (from Australian oil and gas operators) of best practice as well as some of the pitfalls to avoid. In addition, the paper explores the potential for Australian oil and gas regulators to apply a ‘lighter touch’ to the regulation of ISO14001 certified operators.


2021 ◽  
Author(s):  
Imran Harith Bin Azmy ◽  
Azri Bin Azmi ◽  
Mohd Suffian Sulaiman ◽  
Othman Bin Mohd Yusop

2021 ◽  
Author(s):  
Bryan Wade Atchison

Abstract Objectives April 2010 in the Gulf of Mexico and January 2017 in Oklahoma brought into sharp focus what can happen if the oil and gas industry gets well control wrong: 16 fatalities, significant environmental damage, loss of assets and reputation. Each year we have multiple blowouts and several fatality events due to a loss of well control. The oil and gas industry can improve from a personnel safety, environmental and reputation perspective. The Automation of Well Control will bring a significant step change in the area of Process Safety forwells. It prevents blowouts, reduces all influx volumes, minimising kicktolerance volumes and reducingcasing and well costs. Method A system has been developedwhich enables Automated Well Control whilst in drilling mode. Pre-determined influx rates, agreed by the operator and drilling contractor, and input by the driller are established. Once the system detects the influx, it performs a series of operations by taking control of the drilling rig equipment. The drill string is spaced out, top drive and mud pumps are stopped, and the BOP is closed. All of this occurs without the driller doing anything; however, he can intervene at any moment. Thissystem is designed as an aid to the driller and does not remove his responsibility. Results The Automated Well Control system has been tested on drilling simulators with real drillers. Comparisons tests have shown that the technology enables shut-in times faster than conventional human interface methods, with influx volumes typically 10-20% of those experienced during manual shut-in. Additionally, a full Field Trial using a traditional rigdemonstrated the effectiveness of the system, proving up the functionality under different operational requirements. The system can now be applied to any type of rig worldwide. Over 50 potential modules have been identified. Planned developments forthe system include circulatingout the kick automatically, shut-in for tripping, circulating, cementing and in-flow testing. It provides assurance for afast, safe and effective shut-in.A full Technology Qualification process has been used for this technology. Innovative Technology Over the past 20 years, technology advancements associated with simulators and cyber-rigs have enabled new technologies to be developed. One of these technologies is Automated Well Control. It is believed that this innovative system will enable a step change in the performance ofprocess safety forwell control, dramaticallyreducing major accident hazards, thereby saving millions of dollars per well, reducing environmental impact and preventing loss of life.


2018 ◽  
Author(s):  
Xiaobo Peng ◽  
Diwei Zhang

The Measurement While Drilling (MWD) tool is used by oil and gas industry to provide the directional survey information while drilling. With rig rates exceeding $1 million per day and wells that are drilled at depths of over 30,000 ft (9144 m), operators needs to have an MWD tool that can self-power itself to provide high data rates and strong signal strength. Among different types of MWD tool, the Continuous Mud-Pulse Telemetry (C-MPT) can generate high data rates and signal strength. The C-MPT has a rotating valve that propagates signal upstream through the drilling fluid in the drill string. However, the ability to power a C-MPT for the MWD tool using the existing hydraulic forces of the drilling fluid has not been extensively researched. The focus of this study was to propose the 2-lobe and 3-lobe turbo siren designs that can provide power to an alternator while maintain high data rates and signal strength. All turbo siren designs are based on a vein, rotor, and stator. The turbo siren systems were manufactured with 3D printing. An experimental wind tunnel was designed and built to simulate the downhole drilling environment. The testing results of the turbo siren systems are presented and discussed, including no-load rotation speed (RPM), stall torque, power and data rate. The results provide the guidance for the optimization of the self-powered MWD turbo siren design.


Sign in / Sign up

Export Citation Format

Share Document