An Innovative Acid Diversion Using In-Situ Foam Generation: Experimental and Successful Field Application

2021 ◽  
Author(s):  
Ayman Al-Nakhli ◽  
Mohannad Gizani ◽  
Abdualilah Baiz ◽  
Mohammed Yami

Abstract In carbonate reservoirs, effective acid stimulation is essential to overcome reservoir damage and mainline high oil production. Recently, most of oil wells are being drilled horizontally to maximize production. Acid stimulation of horizontal wells with long intervals require very effective acid diversion system. If the diversion system is not efficient enough, most of the acid will be leaking-off near the casing shoe, in openhole well, which will result in a fast water breakthrough and diminish production. This study describes a breakthrough treatment for acidizing long horizontal wells in carbonate formations. The novel technology is based on in-situ foam generation to divert the acid. Gas diversion, as a foam, is a perfect diversion mechanism as gas creates pressure resistance which forces the acid stages to be diverted to new ones?. The diversion will not require the acid to be spent, compared to viscoelastic diverting system. Moreover, no gel is left behind post treatment, which will eliminate any damage potential. The system is not impacted with the presence of corrosion products, where diverting system will not function without effective pickling and tubular cleanup. Lab results showed that the new in-situ foam generation system was very effective on both dolomite and calcite cores. The system creates high back pressure when foam is generated, which significantly diverts the acid stages to stimulate other intervals. Moreover, the new system minimizes acid leak-off and penetration. Open completing the job, the foam collapse leaving no left behind any damaging material. Field application of the in-situ foam generating system showed high success rate and outperformed other diversion mechanisms. The well gain was up to 18 folds of the original well injectivity.

2021 ◽  
Author(s):  
Amjed Mohammed Hassan ◽  
Ayman Raja Al-Nakhli ◽  
Mohamed Ahmed Mahmoud

Abstract Sandstone acidizing is implemented to remove the damage from the near-wellbore region. Different techniques are used to remove the formation and damage and improve reservoir productivity. This paper presents a novel sandstone stimulation technique using thermochemical fluids. The used chemicals are not reactive at surface conditions and react only at the downhole conditions. The reservoir temperature or pH controller can be used to activate the chemical reaction. A successful field application of the proposed method is reported in this paper. Different measurements were conducted to assess the performance of the new technique. A compatibility study was conducted at different conditions to evaluate the generation of acid foam. Also, Coreflood experiments were performed by injecting the foam generating solutions into tight sandstone cores. The rock permeability and the pores network were evaluated before and after the chemical injection. Scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR) and analyses were performed. Moreover, a field application of the in situ acid foam generation was conducted. The treatment was implemented by injecting the solutions to react at the downhole conditions and improve the well injectivity. The profiles of injection rate, circulation pressure, and total volume were monitored during the field treatment to assess the treatment performance. Results showed that the used solutions can generate foam in less time and the volume of the generated foam is around 30 folds of the original chemical volumes. The in situ generated foam can penetrate deeper in the reservoir due to the larger foam volume compared to original chemicals, leading to improve treatment efficiency. Also, the new technique increased the rock permeability from 0.6 to 420 mD due to the dissolution and removal of illite minerals as well as the generation of micro-fractures due to the pressure pulses. The field application showed a very successful performance and the well injectivity was increased by 18 times after the treatment. The proposed technique utilizes thermochemical fluids to generate acid foam at the reservoir conditions. This technique can eliminate all the risks associated with HSE concerns, in addition to the corrosion issues. Also, the proposed treatment showed a successful field application and increased the well injectivity up by 18 folds of the original injectivity.


2016 ◽  
Vol 54 (1) ◽  
pp. 37-52 ◽  
Author(s):  
I Eceiza ◽  
L Irusta ◽  
A Barrio ◽  
MJ Fernández-Berridi

Novel isophorone diisocyanate-based flexible polyurethane foams were prepared by the one-step method in a computerized foam qualification system (FOAMAT). The experimental conditions to obtain this type of foams, in relation to the nature and concentration of catalysts as well as the reaction temperature, were established as no data were available in scientific literature. The chemical reactions occurring during the foam generation process were monitored in situ by attenuated total reflectance-FTIR spectroscopy. The kinetics of the foam generation was fitted to an nth order model and the data showed that the foaming process adjusted to a first-order kinetics. The physical changes as pressure, foam height, and dielectric polarization were monitored by the FOAM software (FOAMAT). According to these parameters, the foaming process was divided into four steps: bubble growth, bubble packing, cell opening, and final curing.


2021 ◽  
Vol 11 (23) ◽  
pp. 11286
Author(s):  
Marina Paula Secco ◽  
Débora Thaís Mesavilla ◽  
Márcio Felipe Floss ◽  
Nilo Cesar Consoli ◽  
Tiago Miranda ◽  
...  

The increasingly strong search for alternative materials to Portland cement has resulted in the development of alkali-activated cements (AAC) that are very effective at using industrial by-products as raw materials, which also contributes to the volume reduction in landfilled waste. Several studies targeting the development of AAC—based on wastes containing silicon and calcium—for chemical stabilization of soils have demonstrated their excellent performance in terms of durability and mechanical performance. However, most of these studies are confined to a laboratory characterization, ignoring the influence and viability of the in situ construction process and, also important, of the in situ curing conditions. The present work investigated the field application of an AAC based on carbide lime and glass wastes to stabilize fine sand acting as a superficial foundation. The assessment was supported on the unconfined compressive strength (UCS) and initial shear modulus (G0) of the developed material, and the field results were compared with those prepared in the laboratory, up to 120 days curing. In situ tests were also developed on the field layers (with diameters of 450 and 900 mm and thickness of 300 mm) after different curing times. To establish a reference, the mentioned precursors were either activated with a sodium hydroxide solution or hydrated with water (given the reactivity of the lime). The results showed that the AAC-based mixtures developed greater strength and stiffness at a faster rate than the water-based mixtures. Specimens cured under controlled laboratory conditions showed better results than the samples collected in the field. The inclusion of the stabilized layers clearly increased the load-bearing capacity of the natural soil, while the different diameters produced different failure mechanisms, similar to those found in Portland cement stabilization.


2020 ◽  
Vol 213 ◽  
pp. 02009
Author(s):  
Quan Hua Huang ◽  
Xing Yu Lin

Horizontal Wells are often used to develop condensate gas reservoirs. When there is edge water in the gas reservoir, it will have a negative impact on the production of natural gas. Therefore, reasonable prediction of its water breakthrough time is of great significance for the efficient development of condensate gas reservoirs.At present, the prediction model of water breakthrough time in horizontal Wells of condensate gas reservoir is not perfect, and there are mainly problems such as incomplete consideration of retrograde condensate pollution and inaccurate determination of horizontal well seepage model. Based on the ellipsoidal horizontal well seepage model, considering the advance of edge water to the bottom of the well and condensate oil to formation, the advance of edge water is divided into two processes. The time when the first water molecule reaches the bottom of the well when the edge water tongue enters is deduced, that is, the time of edge water breakthrough in condensate gas reservoir.The calculation results show that the relative error of water breakthrough time considering retrograde condensate pollution is less than that without consideration, with a higher accuracy. The example error is less than 2%, which can be effectively applied to the development of edge water gas reservoir.


2018 ◽  
Vol 140 (2) ◽  
Author(s):  
Haocai Huang ◽  
Liang Huang ◽  
Wei Ye ◽  
Shijun Wu ◽  
Canjun Yang ◽  
...  

Isobaric gas-tight hydrothermal samplers, with the ability to maintain pressure, can be used to keep in situ chemical and biological sample properties stable. The preloading pressure of the precharged gas is a major concern for isobaric gas-tight hydrothermal samplers, especially when the samplers are used at different sampling depths, where the in situ pressures and ambient temperatures vary greatly. The most commonly adopted solution is to set the preloading pressure for gas-tight samplers as 10% of the hydrostatic pressure at the sampling depth, which might emphasize too much on pressure retention; thereby, the sample volume may be unnecessarily reduced. The pressure transition of the precharged gas was analyzed theoretically and modeled at each sampling stage of the entire field application process. Additionally, theoretical models were built to represent the pressure and volume of hydrothermal fluid samples as a function of the preloading pressure of the precharged gas. Further, laboratory simulation and examination approaches were also adopted and compared, in order to obtain the volume change of the sample and accumulator chambers. By using theoretical models and the volume change of the two chambers, the optimized preloading pressure for the precharged gas was obtained. Under the optimized preloading pressure, the in situ pressure of the fluid samples could be maintained, and their volume was maximized. The optimized preloading pressure obtained in this study should also be applicable to other isobaric gas-tight hydrothermal samplers, by adopting a similar approach to pressure maintenance.


2016 ◽  
Author(s):  
Xueqing Tang ◽  
Lirong Dou ◽  
Ruifeng Wang ◽  
Jie Wang ◽  
Shengbao Wang ◽  
...  

ABSTRACT Jake field, discovered in July, 2006, contains 10 oil-producing and 12 condensate gas-producing zones. The wells have high flow capacities, producing from long-perforation interval of 3,911 ft (from 4,531 to 8,442 ft). Production mechanisms include gas injection in downdip wells and traditional gas lift in updip, zonal production wells since the start-up of field in July, 2010. Following pressure depletion of oil and condensate-gas zones and water breakthrough, traditional gas-lift wells became inefficient and dead. Based on nodal analysis of entire pay zones, successful innovations in gas lift have been made since March, 2013. This paper highlights them in the following aspects: Extend end of tubing to the bottom of perforations for commingled production of oil and condensate gas zones, in order to utilize condensate gas producing from the lower zones for in-situ gas lift.Produce well stream from the casing annulus while injecting natural gas into the tubing.High-pressure nitrogen generated in-situ was used to kick off the dead wells, instead of installation of gas lift valves for unloading. After unloading process, the gas from compressors was injected down the tubing and back up the casing annulus.For previous high water-cut producers, prior to continuous gas lift, approximately 3.6 MMcf of nitrogen can be injected and soaked a couple of days for anti-water-coning.Two additional 10-in. flow lines were constructed to minimize the back pressure of surface facilities on wellhead. As a consequence, innovative gas-lift brought dead wells back on production, yielding average sustained liquid rate of 7,500 bbl/d per well. Also, the production decline curves flattened out than before.


2005 ◽  
Vol 8 (05) ◽  
pp. 445-451
Author(s):  
Huanwen Cui ◽  
Yannong Dong ◽  
Shekhar Sinha ◽  
Rintu Kalita ◽  
Younes Jalali

Summary A method is presented for estimating the distribution of a parameter related to the productivity index along the length of a liner-completed horizontal well, using measurements of well flowing pressure at multiple points along the path of flow in the wellbore. This is the concept of near-wellbore diagnosis with multipoint pressure measurements, which in principle can be made with fiber-optic sensors. The deployment mechanism of the sensors is not modeled in this study, although the temperature version of such sensors has been deployed in horizontal wells on an extended-tail-pipe or stinger completion. (The temperature sensors also have been deployed in horizontal wells with sand-screen completions, in direct contact with the formation, but that configuration is not investigated in this study.) The parameter that is estimated is known in reservoir-simulation terminology as the connection factor (CF), which represents the hydraulic coupling or connectivity between the reservoir and the wellbore (between formation gridblocks and well segments). Parameter CF has units of md-ft, similar to flow capacity, or productivity index multiplied by viscosity. Specifically, the parameter is directly proportional to the geometric mean of the permeability perpendicular to the horizontal axis of the well and is inversely related to skin. No attempts are made in this study to estimate these parameters individually, which may require recourse to other methods of well diagnosis(e.g., dynamic formation testing, transient analysis, and production logging). The method applies to flow under constant-rate conditions and yields estimates of the CF, which represents the quality of the formation in the vicinity of the well and the integrity of the completion along the well trajectory. The quality of the inversion is determined by the spatial density and accuracy of the multipoint measurements. Inversion quality also depends on knowledge of the wellbore hydraulic characteristics and the relative permeability characteristics of the formation. The basic configuration investigated in this study consists of a five-node pressure array in a 2,000-fthorizontal well experiencing a total pressure drop of approximately 60 psi when produced at 10,000 STB/D. A reasonable estimate of the distribution of the parametric group CF is obtained even when allowing for measurement drift and errors in liner roughness and relative permeability exponent. Also, the inversion can be rendered insensitive to knowledge of the far-field permeability through a scaling technique. Therefore, good estimates of the near-wellbore CF profile can be obtained with uncertain knowledge of the reservoir permeability field. This is important because the technique can be applied not only to early-time but also to late-time data. The application of the multipoint pressure method is illustrated through a series of examples, and its potential for near-wellbore formation evaluation for horizontal wells is described. Introduction Horizontal wells can be diagnosed on the basis of information derived from openhole and cased-hole surveys. These include petrophysical logs, dynamic formation testers, production logging, and pressure-transient testing. With the advent of permanent sensing technologies and the development of methods of production-data inversion or history matching, a new form of cased-hole diagnosis can be envisaged, with improved spatial and temporal coverage and without the need for in-well intervention and interruption of production. The impact of such methods on reservoir-scale characterization can also be significant. There are two main preconditions for the development of such a methodology, one concerning sensing technology and the other concerning interpretation methodology. Permanent sensing technology has made great progress during the last decade, with the development of single-point and distributed measurements that can be deployed with the completion (pressure, flow rate, and distributed temperature). However, these systems are typically developed as stand alone measurement units and do not enjoy the required degree of integration. Current modeling methods, however, can be used to provide an incentive for such integration. The well-diagnosis problem is decoupled in our investigation into diagnosis of flow condition in the wellbore and diagnosis of near-wellbore formation characteristics. (By "near-wellbore," we mean the wellbore gridblock scale.)This is partly to adhere to the conventional demarcation between production logging and dynamic formation evaluation and partly to show the natural consequence of the mathematical problem. Basically, the wellbore-diagnosis problem (determination of flux distribution, as in production logging) can treat the formation simply as a boundary condition, but the formation-evaluation problem cannot do the same (i.e., treat the wellbore interface as a boundary condition) because evaluation is based on measurements made inside the wellbore. Thus, both the wellbore and the formation have to betaken into account. (Sensors that are in direct contact with the formation, as mentioned in the Summary, are emerging.8 Therefore, the evolution of this problem is to be expected.) In this study, the permanent or in-situ analog of dynamic formation evaluation is investigated. The in-situ analog of production logging is investigated in a parallel study.


Sign in / Sign up

Export Citation Format

Share Document