A Semiempirical Model for Barium-Strontium-Sulfate Solid Solution Scale Crystallization and Inhibition Kinetics at Oilfield Conditions

SPE Journal ◽  
2021 ◽  
pp. 1-14
Author(s):  
Yue Zhao ◽  
Zhaoyi Dai ◽  
Chong Dai ◽  
Xin Wang ◽  
Samridhdi Paudyal ◽  
...  

Summary Scale inhibitors have been widely used as one of the most efficient methods for sulfate-scale control. To accurately predict the required minimum inhibitor concentration (MIC), we have previously developed several crystallization and inhibition models for pure sulfate scales, including barite, celestite, and gypsum. However, disregarding the wide existence of barium-strontium-sulfate (Ba-Sr-SO4) solid solution in the oil field, no related models have been developed that would lead to large errors in MIC determination. In this study, the induction time of Ba-Sr-SO4 solid solution was measured by laser apparatus with or without different concentrations of scale inhibitor diethylenetriamine penta(methylene phosphonic acid) (DTPMP) at the conditions of barite saturation index (SI) from 1.5 to 1.8, temperature (T) from 40 to 70°C, and [Sr2+]/[Ba2+] ratios from 0 to 15 with celestite SI < 0. The results showed that the Ba-Sr-SO4 solid solution’s induction time increases with the [Sr2+]/[Ba2+] ratio at a fixed barite SI, T, and DTPMP dosage. That means the MIC will be overestimated if it is calculated by the previous semiempirical pure barite crystallization and inhibition models without considering the presence of Sr2+. To resolve such deviations, the novel quantitative Ba-Sr-SO4 solid solution crystallization and inhibition models were developed for the first time. The novel models are in good agreement with the experimental data. They can be used to predict the induction time and MIC more accurately at these common Ba2+ and Sr2+ coexisting scenarios. The observations and new models proposed in this study will significantly improve the barite scale management while Ba2+ and Sr2+ coexist in the oil field. NOTE: Supplementary materials are available in support of this paper and have been published online under Supplementary Data at https://doi.org/10.2118/205367-PA.

2021 ◽  
Author(s):  
Yue Zhao ◽  
Zhaoyi Joey Dai ◽  
Chong Dai ◽  
Xin Wang ◽  
Samridhdi Paudyal ◽  
...  

Abstract Scale inhibitors have been widely used for barite scale control. Our group has developed several barite crystallization and inhibition models to predict the crystallization and inhibition kinetics of pure barite with different inhibitors and calculate the minimum inhibitor concentration (MIC) required. However, instead of pure barite scale formation, the incorporation of Sr2+ can be frequently found in the oilfield, because of the coexistence of Ba2+ and Sr2+ in the produced water, which can influence the kinetics of crystallization and inhibition significantly. As a result, the MIC predicted could be off significantly. Therefore, in this study, the effect of Sr2+ on barite crystallization and inhibition kinetics is quantitatively investigated to evaluate the accuracy of MIC values under various conditions. The induction time of barite with different concentrations of Sr2+ was measured by laser apparatus without or with different concentrations of scale inhibitor diethylenetriamine penta(methylene phosphonic acid) (DTPMP) at the conditions: barite saturation index (SI) from 1.5 to 1.8; temperature (T) from 40 to 70 ℃; and [Sr2+]/[Ba2+] molar ratios from 0 to 15, all with celestite SI < 0. The results show that the induction time of the barite increases with [Sr2+]/[Ba2+] ratio at a fixed barite SI, T and DTPMP dosage. That means the MIC will be overestimated if it is calculated by previous semiempirical pure barite crystallization and inhibition models, without considering the presence of Sr2+. Based on the experimental results, the novel quantitative barite crystallization and inhibition models that include the influence of Sr2+ were developed for the first time as follows: Barite crystallization model with the influence of Sr2+: l o g 10 t 0 B a S O 4 ,   S r = ( 1.523 − 10.88 S I − 895.67 T ( K ) + 5477 S I × T ( K ) + 0.829 × [ C a 2 + ] ) + ( 0.823 S I + 85.44 T ( K ) − 0.667 ) × ( [ Sr 2 + ] [ B a 2 + ] ) Barite inhibition model including the influence of Sr2+ l o g 10 ( t i n h B a s o 4 , S r t 0 B a S O 4 , S r ) = b B a S O 4 , S r × C i n h l o g 10 b B a S O 4 , S r = ( − 2.187 − 1.411 × S I + 1329.29 T ( K ) + 0.153 × p H ) + ( 0.0983 × S I − 74.66 T ( K ) + 0.099 ) × ( [ Sr 2 + ] [ B a 2 + ] ) These novel models are in good agreement with the experimental data. They are used to predict the induction time and MIC more accurately at these common Ba2+ and Sr2+ coexisting scenarios. The observations and new models proposed in this study will significantly improve the barite scale management when Ba2+ and Sr2+ coexist in the oilfield.


2021 ◽  
Author(s):  
Yue Zhao ◽  
Zhaoyi Joey Dai ◽  
Chong Dai ◽  
Samridhdi Paudyal ◽  
Xin Wang ◽  
...  

Abstract Mineral scale formation has always been a serious problem during production. Most scales can be treated by adding threshold scale inhibitors. Several crystallization and inhibition models have previously been reported to predict the minimum inhibitor concentration (MIC) needed to control the barite and calcite scale. Recently, more attentions have been paid to the formation of celestite scale in the oilfield. However, no related models have been developed to help determine the MIC needed for the celestite scale control. Therefore, in this study, the crystallization and inhibition kinetics data of celestite under a wide range of celestite saturation index (SI = 0.7 – 2.6), temperature (T = 25 – 90 °C), ionic strength (IS = 1.075 – 3.075 M) and pH (4 – 6.7) with one phosphonate inhibitor (diethylenetriamine penta(methylene phosphonic acid, DTPMP) and two polymeric inhibitors (phophinopolycarboxylate, PPCA and polyvinyl sulfonate, PVS) were measured by laser apparatus or collected from previous studies. Then, based on the results, the celestite crystallization and inhibition models were established accordingly. Good agreements between the experimental results and calculated results from the models can be found. By using these newly developed models, the MIC needed for three commonly seen inhibitors, DTPMP, PPCA and PVS on celestite scale control can be predicted under extensive production conditions. The developed models can fill in the blank in scaling management strategies for high Sr2+ and SO42- concentrations in the produced waters.


2021 ◽  
Author(s):  
Chao Yan ◽  
Wei Wang ◽  
Wei Wei

Abstract Oilfield scale and corrosion at oil and gas wells and topside facilities are well known problems. There are many studies towards the control and mitigation of scaling risk during production. However, there has been limited research conducted to investigate the effectiveness of scale control approaches for the preservation of wells and facility during a potential long term shut-in period, which could last more than 6 months. Due to low oil price and harsh economic environment, the need to shut-in wells and facilities can become necessary for operations. Understanding of scale control for a long term period is important to ensure both subsurface and surface production integrity during the shut-in period. The right strategy and treatment approaches in scale management will reduce reservoir and facility damage as well as the resulting cost for mitigation. In this paper, we will review and assess the scale risk for different scenarios for operation shut-in periods and utilize laboratory study to improve the understanding of long-term impact and identify appropriate mitigation strategy. Simulated brine compositions from both conventional and unconventional fields are tested. Commercially available scale inhibitors are used for testing. Various conditions including temperature (131-171 °F), saturation index (1.28-1.73), pH (7.04-8.03) and ratio of scaling ions are evaluated. The tested inhibitor dosage range was 0-300 mg/L. Inhibitor-brine incompatibility was also investigated. Sulfate and carbonate scales such as barium sulfate, strontium sulfate and calcium carbonate are studied as example. This paper will provide an important guidance for the management of well shut- in scenarios for the industry, for both conventional and unconventional fields. Performance of two scale inhibitors for same water composition are demonstrated. The efficiency of scale inhibitor #2 is lower than that of inhibitor #1. A linear correlation is observed for long term scale inhibitor performance in this case. Protection time is thus predicted from data collected from the first 8-week experiments. The predicted protection time at 250 mg/L of inhibitor A and B is 100 weeks and 16 weeks respectively. The actual protection time will be compared to the predicted value. The inhibitor-rock interaction has also been preliminarily studied. The effects of inhibitor adsorption onto formation rock should be considered for chemical treatment design and performance/dosage optimization. This study provides novel information of scale control in a much longer time frame (up to 6 months). Various parameters may have effects on their long term control. Results will benefit the chemical selection and evaluation for long term well shut-in scenario. In addition, brine-inhibitor compatibility is evaluated simultaneously.


2021 ◽  
pp. 118592
Author(s):  
Eslam Aboelezz ◽  
Emanuela Bortolin ◽  
Maria Cristina Quattrini ◽  
Sara Della Monaca

Author(s):  
Kiflom Gebremedhn Kelele ◽  
Aschalew Tadesse ◽  
Tegene Desalegn ◽  
Suresh Ghotekar ◽  
Ruthramurthy Balachandran ◽  
...  

Abstract The ferroelectric barium strontium titanate (Ba1-xSrxTiO3) is a homogeneous solid solution prepared from the mixture of barium titanate (BaTiO3), strontium titanate (SrTiO3) and titanium (IV) isopropoxide. Barium strontium titanate (BST) nanomaterials with improved permittivity and dielectric properties due to their nano-properties have attracted great interest for extensive and versatile applications as super capacitors, dielectrics, ceramics and catalysts. Introduction of metal ion dopants into the parent system of BST significantly alters its structural, morphological, electrical, optical and dielectric characteristics. This review is aimed at addressing synthesis, characterization methods, photocatalytic and electrical applications of metal ions doped BST nanomaterials. The effect of doping BST, through metal ions, on its properties and application with most probable reasons have been thoroughly discussed.


Author(s):  
Paola Adriana Coca Suaznabar ◽  
Kazuo Miura ◽  
Celso Kazuyuki Morooka

The purpose of this research is to identify in the literature: causes, factors, case study descriptions and adopted solutions for production losses regarding the petroleum flow in offshore oil wells. Those facts will be organized and structured to identify potential zones of intervention for planning the well maintenance during well design phase to avoid production losses. This paper focuses on four offshore regions: Campos Basin, Gulf of Mexico, North Sea, and West Africa. These regions represent the most significant share of offshore oil production in the world. Data set available in the last thirty five years through academic, technical and governmental reports in the literature were the basis of this study. The procedure was accomplished in three steps: (1) data research (2) analysis of the data (3) guidelines establishment. The main cause of production loss regarding the petroleum flow is the solids deposition in the well/line system, such as hydrates, asphaltenes, wax, scales (barium sulfate, strontium sulfate, calcium sulfate, calcium carbonate, and naturally occurrence radioactive material), and calcium naphthenates. In this work the superposition of graphics (hydrate curve, wax appearance temperature, asphaltene onset pressure, and saturation index) resulted in a region free of solids deposition, denominated as “flow assurance envelope”. The main expected result is to propose a guideline to be used during the well design phase in order to minimize and facilitate the well intervention. The main contributions of this paper to the oil industry are the identification of potential zones of intervention due to solids deposition in the well/line system, the foresight of well intervention before the beginning of the oilfield production, and finally, possibilities to improve the well or intervention design.


2015 ◽  
Vol 221 ◽  
pp. 32-36 ◽  
Author(s):  
Agata Bialy ◽  
Peter B. Jensen ◽  
Didier Blanchard ◽  
Tejs Vegge ◽  
Ulrich J. Quaade

2015 ◽  
pp. 603-617 ◽  
Author(s):  
Ping Zhang ◽  
Amy T. Kan ◽  
Mason B. Tomson

Sign in / Sign up

Export Citation Format

Share Document