Extreme Well Electrical Submersible Pump: Altering Perception in Artificial Lift Selection

2021 ◽  
Author(s):  
Reza Alfajri ◽  
Herbert Sipahutar ◽  
Heru Irianto ◽  
Harry Kananta ◽  
Catur Sunawan Balya ◽  
...  

Abstract Electrical Submersible Pump (ESP) is an artificial lift that often associated with big production rate, which is at least 300 bbls/day. ESP also has limitation in handling unconsolidated sand reservoir, high GOR wells, and minimum casing ID. As technology flourished, these handicaps for an ESP well are no longer valid. A breakthrough was established for ESP utilization. However people's perception of ESP persists. Extreme well ESP is changing that perception. There are three types of extreme well ESP: high solid content, high GOR, and slim-line ESP. High solid content ESP has open impellers. This type of impeller creates no space between impeller and diffuser, hence no solids accumulation. Multiphase pump (MPP) is used to handle high GOR problem. MPP stage design has axial screw type impeller and gas handling diffuser. Gas from reservoir fluid will be compressed and broken into smaller bubbles resulting in homogenous gas-liquid mixture, hence no gas lock during production. For well with small casing ID e.g., 4-1/2" casing, slim-line ESP with 3.19" outside diameter is utilized. These three types of extreme well ESP were all utilized in Central Sumatera Asset of Pertamina EP. High solid content ESPs were installed in five wells (MJ-134, MJ-132, MJ-128, STT-25, and KTT-23) in four different structures with production range of 30 to 1200 bbls/day. Basic Sediment (BS) number in this asset varies from 0.1% up to 40%, which results in suspending wells and repeating well services. In wells MJ-134, high solid content ESP was able to produce up to 50% BS number at the beginning of production. It showed excellent lifting capability in severe sand problem condition. While in wells STT-25 and KTT-23, utilizing high solid content ESP increases well's lifetime and generates gain in production. High GOR ESPs were installed in wells PPS-01 and SGC-15. Both wells has around 2000 scf/stb GOR. Conventional ESP would have a hard time producing these gassy wells. By using MPP, well PPS-01 produced smoothly and even later optimized to have bigger production. Producing well SGC-15 faced another handicap in form of scale deposition. Scale preventer was also installed for this well. Slim-line ESP was installed in well BJG-01 that has 4-1/2" casing. Grossing up the wells with slim-line ESP contributes production gain. Since October 2019 this project has produced cumulative production of 56,199 bbls oil and counting, and been considered successful in solving extreme well problems. Being proven able to handle high BS number, high GOR, and produce well with small casing size, extreme well ESP is altering old mindset in ESP utilization. All of handicaps mentioned above were redeemed obsolete. This breakthrough starts the dawn of new perception in artificial lift selection.

2021 ◽  
Vol 28 (7) ◽  
Author(s):  
Wenqi Xian ◽  
Jie Yuan ◽  
Zhengbin Xie ◽  
Wei Ou ◽  
Xiaoxuan Liu ◽  
...  

Author(s):  
Haomiao Yu ◽  
Sensen Sun ◽  
Jianbing Gao ◽  
Xiaoxun Jin ◽  
Jie Liu ◽  
...  

2021 ◽  
Vol 164 ◽  
pp. 113396
Author(s):  
Xiaojuan Chen ◽  
Zhonghua Li ◽  
Lidan Zhang ◽  
Haoran Wang ◽  
Congzhi Qiu ◽  
...  

2021 ◽  
Author(s):  
Mohd Hafizi Ariffin ◽  
Muhammad Idraki M Khalil ◽  
Abdullah M Razali ◽  
M Iman Mostaffa

Abstract Most of the oil fields in Sarawak has already producing more than 30 years. When the fields are this old, the team is most certainly facing a lot of problems with aging equipment and facilities. Furthermore, the initial stage of platform installation was not designed to accommodate a large space for an artificial lift system. Most of these fields were designed with gas lift compressors, but because of the space limitation, the platforms can only accommodate a limited gas lift compressor capacity due to space constraints. Furthermore, in recent years, some of the fields just started with their secondary recovery i.e. water, gas injection where the fluid gradient became heavier due to GOR drop or water cut increases. With these limitations and issues, the team needs to be creative in order to prolong the fields’ life with various artificial lift. In order to push the limits, the team begins to improve gas lift distribution among gas lifted wells in the field. This is the cheapest option. Network model recommends the best distribution for each gas lifted wells. Gas lifted wells performance highly dependent on fluid weight, compressor pressure, and reservoir pressure. The change of these parameters will impact the production of these wells. Rigorous and prudent data acquisitions are important to predict performance. Some fields are equipped with pressure downhole gauges, wellhead pressure transmitters, and compressor pressure transmitters. The data collected is continuous and good enough to be used for analysis. Instead of depending on compressor capacity, a high-pressure gas well is a good option for gas lift supply. The issues are to find gas well with enough pressure and sustainability. Usually, this was done by sacrificing several barrels of oil to extract the gas. Electrical Submersible Pump (ESP) is a more expensive option compared to a gas lift method. The reason is most of these fields are not designed to accommodate ESP electricity and space requirements. Some equipment needs to be improved before ESP installation. Because of this, the team were considering new technology such as Thru Tubing Electrical Submersible Pump (TTESP) for a cheaper option. With the study and implementation as per above, the fields able to prolong its production until the end of Production Sharing Contract (PSC). This proactive approach has maintained the fields’ production with The paper seeks to present on the challenges, root cause analysis and the lessons learned from the subsequent improvement activities. The lessons learned will be applicable to oil fields with similar situations to further improve the fields’ production.


2021 ◽  
Author(s):  
Abdullatif Al-Majdli ◽  
Carlos Caicedo Martinez ◽  
Sarah Al-Dughaishem

Abstract Oil production in North Kuwait (NK) asset highly relies on artificial lift systems. The predominant method of artificial lift in NK is electrical submersible pump (ESP). Corrosion is one of the major issues for wells equipped with ESP in NK field. Over 20% of the all pulled ESPs in 2019 and 2020 in NK field were due to corrosion of the completion or the ESP string. With an increase in ESP population in NK, a proactive corrosion mitigation is essential to reduce the number of ESP wells requiring workover. Historic data of the pulled ESPs in NK revealed that most of the corrosion cases were found in the tubing as opposed to the ESP components. Although there are multiple factors that can cause corrosion in NK, the driving force was identified to be the presence of CO2 (sweet corrosion). Corrosion rates have been enhanced by other factors such as stray current and galvanic couples. In this paper, multiple methods have been suggested to minimize and prevent the corrosion issue such as selecting the optimal completion and ESP metallurgy (ex. corrosion resistant alloy), installing internally glass reinforced epoxy lined carbon steel tubing, and installing a sacrificial anode whenever applicable.


Sign in / Sign up

Export Citation Format

Share Document