Novel Nano and Bio-Based Surfactant Formulation for Hybrid Enhanced Oil Recovery Technologies

2021 ◽  
Author(s):  
Qisheng Ma ◽  
Wenjie Xia ◽  
Yongchun Tang ◽  
Mohamed Haroun ◽  
Md Motiur Rahman ◽  
...  

Abstract This investigation presents laboratory and field deployment results that demonstrate the potential candidacy utilizing Nano and bio-technologies to create superior chemicals for novel applications to increase oil recovery from both onshore and offshore reservoirs. Nano-technology is gaining momentum as a tool to improve performance in multiple industries, and has shown significant potential to enhance hydrocarbon production. The laboratory analysis and specifically designed coreflood results indicate there are beneficial interactions at liquid-nano solid interface that increase oil mobility. This will increase the surface activity of chemical surfactants and thereby make them the dominant agents to mobilize and recover oil from oil-bearing reservoirs. Advances in biotechnology offer another rich resource of knowledge for surface active materials that are renewable and more environmental-friendly. In addition, our studies also demonstrate that bio-surfactants are well-suited to provide superior performances in enhancing oil recovery. Nano-particles and biosurfactants may be included with synthetic surfactants to create novel and more efficient surface active agents for enhanced oil recovery. These formulations can promote better flow back of the injected stimulation fluids and additional mobilization to extract more oil from the matrix and micro-fractures. Laboratory experiments demonstrate that the specialized surfactant formulations created, interact with mixed or oil-wet low permeability formations to produce additional oil. Furthermore, this investigation also compares the total production on a candidate field with respect to typical water flood and the novel formulated surfactant approach. For each surfactant treatment, the overall designed injected fluid volume is 1500 m3 (~ 396,000 gallons) with 4 gpt (gallon per thousand unit) of surfactant concentration. Results indicate improved oil production with longer exposure time of the key surfactants within the reservoir. Enhanced surface wetting and super-low interfacial tension (IFT) at lower chemical concentrations are recognized to be the main mechanisms. The novel surfactant also shows stronger sustainability and endurance in keeping rock surface wettability over traditional surfactant system up to 5 times for an 8 PV wash. Furthermore, this can assist to identify and initiate the optimization of the identified mechanisms for potential applications within other compatible reservoirs. A number of successful field applications of EOR with special formulated nano and bio-based surfactant formulation are discussed in this paper. This unique study bridges the gap between the field realized results and lab optimization to enhance feasibility as a function of time and cost.

RSC Advances ◽  
2020 ◽  
Vol 10 (69) ◽  
pp. 42570-42583
Author(s):  
Rohit Kumar Saw ◽  
Ajay Mandal

The combined effects of dilution and ion tuning of seawater for enhanced oil recovery from carbonate reservoirs. Dominating mechanisms are calcite dissolution and the interplay of potential determining ions that lead to wettability alteration of rock surface.


Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 822 ◽  
Author(s):  
Alberto Bila ◽  
Jan Åge Stensen ◽  
Ole Torsæter

Recently, polymer-coated nanoparticles were proposed for enhanced oil recovery (EOR) due to their improved properties such as solubility, stability, stabilization of emulsions and low particle retention on the rock surface. This work investigated the potential of various polymer-coated silica nanoparticles (PSiNPs) as additives to the injection seawater for oil recovery. Secondary and tertiary core flooding experiments were carried out with neutral-wet Berea sandstone at ambient conditions. Oil recovery parameters of nanoparticles such as interfacial tension (IFT) reduction, wettability alteration and log-jamming effect were investigated. Crude oil from the North Sea field was used. The concentrated solutions of PSiNPs were diluted to 0.1 wt % in synthetic seawater. Experimental results show that PSiNPs can improve water flood oil recovery efficiency. Secondary recoveries of nanofluid ranged from 60% to 72% of original oil in place (OOIP) compared to 56% OOIP achieved by reference water flood. In tertiary recovery mode, the incremental oil recovery varied from 2.6% to 5.2% OOIP. The IFT between oil and water was reduced in the presence of PSiNPs from 10.6 to 2.5–6.8 mN/m, which had minor effect on EOR. Permeability measurements indicated negligible particle retention within the core, consistent with the low differential pressure observed throughout nanofluid flooding. Amott–Harvey tests indicated wettability alteration from neutral- to water-wet condition. The overall findings suggest that PSiNPs have more potential as secondary EOR agents than tertiary agents, and the main recovery mechanism was found to be wettability alteration.


Sign in / Sign up

Export Citation Format

Share Document