Development of Fracturing Fluids Based on Acrylamide Copolymers and Study of Their Physical and Technological Properties Using the Oscillatory Rheometry Methods

2021 ◽  
Author(s):  
Maksim Vasilyevich Kazak ◽  
Sergey Igorevich Panin ◽  
Andrei Mikhailovich Valenkov ◽  
Tsimur Donalovich Hiliazitdzinau

Abstract This work studies the rheological properties of aqueous solutions of acrylamide copolymers. The prevailing role of elastic properties over viscous properties in predicting the proppant suspension capacity of the resulting fracturing fluid is shown. Furthermore, the potential of the use of oscillatory rheometry for studying fracturing fluid stability is demonstrated.

Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3121
Author(s):  
Alina Culetu ◽  
Denisa Eglantina Duta ◽  
Maria Papageorgiou ◽  
Theodoros Varzakas

Hydrocolloids are important ingredients controlling the quality characteristics of the final bakery products. Hydrocolloids are frequently used in gluten-free (GF) recipes, mimicking some rheological properties of gluten, improving dough properties, delaying starch retrogradation and improving bread texture, appearance and stability. Hydrocolloids addition increases viscosity and incorporation of air into the GF dough/batter. Besides their advantages for the technological properties of the GF bread, hydrocolloids addition may impact the glycemic index (GI) of the final product, thus answering the demand of people requiring products with low GI. This review deals with the application of hydrocolloids in GF bread and pasta with a focus on their effect on dough rheology, bread hardness, specific volume, staling and GI.


1985 ◽  
Vol 25 (05) ◽  
pp. 623-628 ◽  
Author(s):  
C.C. LaGrone ◽  
S.A. Baumgartner ◽  
R.A. Woodroof

Abstract Reservoirs with bottomhole temperatures (BHT's) in excess of 250 deg. F [121 deg. C] and permeabilities of less than 1.0 md are commonly encountered in drilling and completing geothermal and deep gas wells. Successful stimulation of these wells often requires the use of massive hydraulic fracturing (MHF) treatments. Fracturing fluids chosen for these large treatments must possess shear and thermal stability at high BHT'S. The use of conventional fracturing fluids has been limited traditionally to wells with BHT's of 250 deg. F [121 deg. C] or less. Above 250 deg. F [121 deg. C], high polymer concentrations and/or large fluid volumes are required to maintain effective fluid viscosities in the fracture. However, high polymer concentrations lead to high friction pressures, high costs, and high gel residue levels. The large fluid volumes also increase significantly the cost of the treatment. Greater understanding of fracturing fluid properties has led to the development of a crosslinked fracturing fluid designed specifically for wells with BHT's above 250 deg F [121 deg C). The specialized chemistry of this fluid combines a high-ph hydroxypropyl guar gum (HPG) solution with a high-temperature gel stabilizer and a proprietary crosslinker. The fluid remains stable at 250 to proprietary crosslinker. The fluid remains stable at 250 to 350 deg. F [121 to 177 deg. C] for extended periods of time under shear. This paper describes the rheologial evaluations used in the systematic development of this fracturing fluid. In field applications, this fracturing fluid has been used to stimulate successfully wells with BHT's ranging from 250 to 540 deg. F [121 to 282 deg C). Case histories that include pretreatment and posttreatment production data are presented. Introduction Temperatures exceeding 250 deg F [121 deg C) and permeabilities less than 1.0 md are frequently encountered in permeabilities less than 1.0 md are frequently encountered in deep gas and geothermal wells. Successful economic completion of these wells requires that long, conductive fractures with optimal proppant distribution be created. Ultimately, the amount of production from these formations depends on the propped fracture length created. One successful stimulation technique used to create these long fractures is MHF. In these treatments, the fracturing fluids are often exposed to shear in the fracture for prolonged periods of time at high temperatures. Thus the fracturing fluids must exhibit extended shear and thermal stability at the high BHT'S. In addition, the fracturing fluid must not leak off rapidly into the formation, or the fracture may not be extended to the desired length. Many early treatments were limited by fracturing fluids that lost viscosity rapidly at high BHT's because of excessive thermal and/or shear degradation. Creation of a narrow fracture width, excessive fluid loss to the formation, and insufficient proppant transport resulted from the use of these low viscosity fluids. The solution to conventional fracturing fluid deficiencies was to develop a more efficient fracturing fluid (low polymer concentrations) with greater viscosity retention under shear at high temperatures, better fluid-loss control, and lower friction pressures. Generally, the components that make up crosslinked fracturing fluids include a polymer, buffer, gel stabilizer, and crosslinker. Each of these components is critical to the development of the desired fracturing fluid properties. The role of polymers in fracturing fluids is to properties. The role of polymers in fracturing fluids is to provide fracture width, to suspend proppants, to help provide fracture width, to suspend proppants, to help control fluid loss to the formation, and to reduce friction pressure in the tubular goods. Guar gum and cellulosic pressure in the tubular goods. Guar gum and cellulosic derivatives are the most common types of polymers used in fracturing fluids. The cellulosic derivatives are residue-free and thus help minimize fracturing fluid damage to the formation. However, the cellulosic derivatives are difficult to disperse because of their rapid rate of hydration. Guar gum and its derivatives are easily dispersed but produce some residue when broken. Buffers are used in conjunction with polymers so that the optimal pH for polymer hydration can be attained. When the optimal pH is reached, the maximal viscosity yield from the polymer is more likely to be obtained. The most common example of fracturing fluid buffers is a weak-acid/weak-base blend, whose ratios can be adjusted to that the desired ph is reached. However, some of these buffers dissolve slowly, particularly at cooler temperatures. Gel stabilizers are added to polymer solutions to inhibit chemical degradation. Examples of gel stabilizers used in fracturing fluids include methanol and various inorganic sulfur compounds. Other stabilizers are useful in inhibiting the chemical degradation process, but many interfere with the mechanism of crosslinking. The sulfur containing stabilizers possess an advantage over methanol, which is flammable, toxic, and expensive. SPEJ P. 623


1995 ◽  
Vol 60 (4) ◽  
pp. 527-536 ◽  
Author(s):  
Martin Breza ◽  
Alena Manová

Using semiempirical MNDO method of quantum chemistry the optimal geometries and corresponding electronic structures of [Pb3(OH)n]6-n model systems as well as of their hydrated [Pb3(OH)n(H2O)8-n]6-n analogues (n = 4, 5) are investigated. The most stable trinuclear lead(II) complexes present in aqueous solutions correspond to cyclo-(μ3-OH)(μ2-OH)3Pb32+, Pb(μ-OH)2Pb(μ-OH)2Pb2+, cyclo-(μ3-OH)2(μ2-OH)3Pb3+, Pb(OH)(μ-OH)2Pb(μ-OH)Pb(OH)+ and Pb(OH)(μ-OH)2Pb(μ-OH)2Pb+ systems. The key role of OH bridges (by vanishing direct Pb-Pb bonds) on the stability of individual isomers is discussed.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1783
Author(s):  
Klaudia Wilk-Zajdel ◽  
Piotr Kasza ◽  
Mateusz Masłowski

In the case of fracturing of the reservoirs using fracturing fluids, the size of damage to the proppant conductivity caused by treatment fluids is significant, which greatly influence the effective execution of hydraulic fracturing operations. The fracturing fluid should be characterized by the minimum damage to the conductivity of a fracture filled with proppant. A laboratory research procedure has been developed to study the damage effect caused by foamed and non-foamed fracturing fluids in the fractures filled with proppant material. The paper discusses the results for high quality foamed guar-based linear gels, which is an innovative aspect of the work compared to the non-foamed frac described in most of the studies and simulations. The tests were performed for the fracturing fluid based on a linear polymer (HPG—hydroxypropyl guar, in liquid and powder form). The rheology of nitrogen foamed-based fracturing fluids (FF) with a quality of 70% was investigated. The quartz sand and ceramic light proppant LCP proppant was placed between two Ohio sandstone rock slabs and subjected to a given compressive stress of 4000–6000 psi, at a temperature of 60 °C for 5 h. A significant reduction in damage to the quartz proppant was observed for the foamed fluid compared to that damaged by the 7.5 L/m3 natural polymer-based non-foamed linear fluid. The damage was 72.3% for the non-foamed fluid and 31.5% for the 70% foamed fluid, which are superior to the guar gum non-foamed fracturing fluid system. For tests based on a polymer concentration of 4.88 g/L, the damage to the fracture conductivity by the non-foamed fluid was 64.8%, and 26.3% for the foamed fluid. These results lead to the conclusion that foamed fluids could damage the fracture filled with proppant much less during hydraulic fracturing treatment. At the same time, when using foamed fluids, the viscosity coefficient increases a few times compared to the use of non-foamed fluids, which is necessary for proppant carrying capacities and properly conducted stimulation treatment. The research results can be beneficial for optimizing the type and performance of fracturing fluid for hydraulic fracturing in tight gas formations.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3538
Author(s):  
Anna Pudło ◽  
Szymon Juchniewicz ◽  
Wiesław Kopeć

The aim of the presented research was to obtain reconstituted atelocollagen fibers after extraction from poultry cartilage using the pepsin-acidic method in order to remove telopeptides from the tropocollagen. Firstly, we examined the extraction of collagen from the cartilage extracellular matrix (ECM) after proteoglycans (PG) had been removed by the action of salts, i.e., NaCl or chaotropic MgCl2. Additionally, the effects of the salt type used for PG and hyaluronic acid removal on the properties of self-assembled fibers in solutions at pH 7.4 and freeze-dried matrices were investigated. The basic features of the obtained fibers were characterized, including thermal properties using scanning calorimetry, rheological properties using dynamic oscillatory rheometry, and the structure by scanning electron microscopy. The fibers obtained after PG removal with both analyzed types of salts had similar thermal denaturation characteristics. However, the fibers after PG removal with NaCl, in contrast to those obtained after MgCl2 treatment, showed different rheological properties during gelatinization and smaller diameter size. Moreover, the degree of fibrillogenesis of collagens after NaCl treatment was complete compared to that with MgCl2, which was only partial (70%). The structures of fibers after lyophilization were fundamentally different. The matrices obtained after NaCl pretreatment form regular scaffolds in contrast to the thin, surface structures of the cartilage matrix after proteoglycans removal using MgCl2.


Author(s):  
Jacopo Quaglierini ◽  
Alessandro Lucantonio ◽  
Antonio DeSimone

Abstract Nature and technology often adopt structures that can be described as tubular helical assemblies. However, the role and mechanisms of these structures remain elusive. In this paper, we study the mechanical response under compression and extension of a tubular assembly composed of 8 helical Kirchhoff rods, arranged in pairs with opposite chirality and connected by pin joints, both analytically and numerically. We first focus on compression and find that, whereas a single helical rod would buckle, the rods of the assembly deform coherently as stable helical shapes wound around a common axis. Moreover, we investigate the response of the assembly under different boundary conditions, highlighting the emergence of a central region where rods remain circular helices. Secondly, we study the effects of different hypotheses on the elastic properties of rods, i.e., stress-free rods when straight versus when circular helices, Kirchhoff’s rod model versus Sadowsky’s ribbon model. Summing up, our findings highlight the key role of mutual interactions in generating a stable ensemble response that preserves the helical shape of the individual rods, as well as some interesting features, and they shed some light on the reasons why helical shapes in tubular assemblies are so common and persistent in nature and technology. Graphic Abstract We study the mechanical response under compression/extension of an assembly composed of 8 helical rods, pin-jointed and arranged in pairs with opposite chirality. In compression we find that, whereas a single rod buckles (a), the rods of the assembly deform as stable helical shapes (b). We investigate the effect of different boundary conditions and elastic properties on the mechanical response, and find that the deformed geometries exhibit a common central region where rods remain circular helices. Our findings highlight the key role of mutual interactions in the ensemble response and shed some light on the reasons why tubular helical assemblies are so common and persistent.


Sign in / Sign up

Export Citation Format

Share Document