First Successful Pilot Testing of Unconventional Reservoir in North Kuwait from Scratch to Productivity

2021 ◽  
Author(s):  
Zamzam Mohammed Ahmed ◽  
Abrar Mohammed Salem ◽  
Jose Ramon ◽  
Liu Pei Wu ◽  
Benjamin Mowad

Abstract Jurassic's kerogen shale-carbonate reservoir in North Kuwait is categorized as a source rock exhibiting micro- to Nano Darcy permeability and is Kuwait Oil Company's focus in recent years. Although the challenges are significant (formation creep, fracturing initiation, etc.), the efforts toward producing from unconventional reservoirs and applying experience from both USA and Canada in this field are ongoing. As a step toward development, the gas field development group selected a vertical pilot well to measure the inflow of hydrocarbon from a single fracture while minimizing formation creep (flowing of particulate material and formation into the wellbore that blocks the production). This step was required prior to drilling a long horizontal lateral wells and completing it with multiple hydraulic fractures to confirm commercial production. A comprehensive design process was executed with the full integration of operator and service company competencies to achieve the three main objectives: First, characterize the kerogen rock mechanics which allows selection of the most competent kerogen beds to prevent collapse of the hole during fracturing (creep effect) by conducting scratch, unconfined stress, proppant embedment, and fluid compatibility tests. Then, prepare a suit of strength measurements on full core samples to help in fracturing design and minimize creep effect. The second objective was to design and implement a robust proppant fracturing program that avoids the kerogen concerns after selecting the most competent reservoir unit and suitable proppant type. Third, perform controlled flowback to unload the well and attempt to establish clean inflow unlike previous attempts that failed to either suitably stimulate or prevent solids production (deliver clean inflow). After analyzing the lab test results, choosing the optimal fracturing design, and preparing the vertical well for proppant hydraulic fracturing, the treatment was performed. In December 2019, the hydraulic fracturing treatment with resin-coated bauxite proppant was successfully pumped through 6 ft of perforation interval and followed by a controlled flowback. Resin-coated bauxite proppant was specifically selected to overcome the creep and embedment effects during the fracture closure and flowback. Moreover, a properly designed choke schedule was implemented to balance unloading with a delicate enough drawdown to avoid formation failure. This paper discusses in detail the lab testing, evolution of fracturing design, treatment analysis, and the robust workflow that led to successfully achieving all main objectives, paving the way for long horizontal lateral wells. This unconventional undertaking in Kuwait presents a real challenge. It is a departure from traditional methods, yet it points toward a high upside potential should the appraisal campaign be completed effectively.

2021 ◽  
Author(s):  
Aamir Lokhandwala ◽  
Vaibhav Joshi ◽  
Ankit Dutt

Abstract Hydraulic fracturing is a widespread well stimulation treatment in the oil and gas industry. It is particularly prevalent in shale gas fields, where virtually all production can be attributed to the practice of fracturing. It is also used in the context of tight oil and gas reservoirs, for example in deep-water scenarios where the cost of drilling and completion is very high; well productivity, which is dictated by hydraulic fractures, is vital. The correct modeling in reservoir simulation can be critical in such settings because hydraulic fracturing can dramatically change the flow dynamics of a reservoir. What presents a challenge in flow simulation due to hydraulic fractures is that they introduce effects that operate on a different length and time scale than the usual dynamics of a reservoir. Capturing these effects and utilizing them to advantage can be critical for any operator in context of a field development plan for any unconventional or tight field. This paper focuses on a study that was undertaken to compare different methods of simulating hydraulic fractures to formulate a field development plan for a tight gas field. To maintaing the confidentiality of data and to showcase only the technical aspect of the workflow, we will refer to the asset as Field A in subsequent sections of this paper. Field A is a low permeability (0.01md-0.1md), tight (8% to 12% porosity) gas-condensate (API ~51deg and CGR~65 stb/mmscf) reservoir at ~3000m depth. Being structurally complex, it has a large number of erosional features and pinch-outs. The study involved comparing analytical fracture modeling, explicit modeling using local grid refinements, tartan gridding, pseudo-well connection approach and full-field unconventional fracture modeling. The result of the study was to use, for the first time for Field A, a system of generating pseudo well connections to simulate hydraulic fractures. The approach was found to be efficient both terms of replicating field data for a 10 year period while drastically reducing simulation runtime for the subsequent 10 year-period too. It helped the subsurface team to test multiple scenarios in a limited time-frame leading to improved project management.


2022 ◽  
Author(s):  
Zamzam Mohammed Ahmed ◽  
Abrar Mohammed Salem ◽  
Liu Pei Wu ◽  
Benjamin Mowad

Abstract Jurassic Kerogen shale/carbonate reservoir in North Kuwait provides the same challenges as North American shales in addition to ones not yet comparable to any other analogue reservoir globally. It is the Kerogen's resource density; however, that makes this play so attractive. Like ‘conventional’ unconventional in the US and Canada this kerogen is believed to be a source rock and is on the order of micro-to nano-Darcy permeability. As such, industry learnings show that likely long horizontal laterals with multiple hydraulic fractures will be necessary to make commercial wells. Following this premise, the immediate objective is to establish clean inflow into wellbore as the previous attempts to appraise failed due to "creep" of particulate material and formation flowing into the wellbore. Achieving this milestone will confirm that this formation is capable of solids free inflow and will open a new era in unconventional in Kuwait. Planning for success, the secondary objective is to then upscale to full field development. The main uncertainties lie in both producibility and ‘frac-ability’, and certainly, these challenges are not trivial. A fully integrated testing program was applied to both better understand the rock mechanical properties and to land on an effective frac design. Scratch, unconfined stress, proppant embedment and fluid compatibility tests were conducted on full core samples for geo-mechanics to prepare a suite of strength measurements ahead of frac design and to custom-design the fracture treatment and "controlled" flowback programs to establish inflow from Kerogen without "creep". Unlike developed shale reservoirs, the Jurassic Kerogen tends to become unconsolidated when treated. The pre-frac geomechanics tests will be outlined in this paper with the primary objective of finding the most competent reservoir unit to select the limited perforation interval to frac through so that formation competency can be maintained. Previous attempts failed to maintain a competent rock matrix even only after pumping data-fracs. Acidizing treatments also turn the treated rock volume into sludgy material with no in-situ stability nor ability to deliver "clean inflow". A propped fracturing treatment with resin-coated bauxite was successfully placed in December 2019 in a vertical appraisal well perforated over 6 ft at 12 spf shot density. "Controlled" flowback carried out in January 2020 achieved the strategically critical "clean inflow" with reservoir fluids established to surface. Special proppant technologies provided by an industry leading manufacturer overcame the embedment effects and to control solids flowback. A properly designed choke schedule to balance unloading with a delicate enough drawdown to avoid formation failure was executed. Local oilfields relied on the vast reserves and produced easily from carbonate reservoirs that required only perforating or acid squeezes to easily meet or exceed high production expectations. This unconventional undertaking in Kuwait presents a real challenge as it is a complete departure from the ways of working yet it points towards a very high upside potential should the appraisal campaign can be completed effectively.


Geophysics ◽  
2020 ◽  
pp. 1-49
Author(s):  
Aleksei Titov ◽  
Gary Binder ◽  
Youfang Liu ◽  
Ge Jin ◽  
James Simmons ◽  
...  

Optimization of well spacings and completions are key topics in research related to the development of unconventional reservoirs. In 2017, a vertical seismic profiling (VSP) survey using fiber-optic-based distributed acoustic sensing (DAS) technology was acquired. The data include a series of VSP surveys taken before and immediately following the hydraulic fracturing of each of 78 stages. Scattered seismic waves associated with hydraulic fractures are observed in the seismic waveforms. Kinematic traveltime analysis and full-wavefield modeling results indicate these scattered events are converted PS-waves. We tested three different models of fracture-induced velocity inhomogeneities that can cause scattering of seismic waves: single hydraulic fracture, low-velocity zone, and tip diffractors. We compare the results with the field observations and conclude that the low-velocity zone model has the best fit for the data. In this model, the low-velocity zone represents a stimulated rock volume (SRV). We propose a new approach that uses PS-waves converted by SRV to estimate the half-height of the SRV and the closure time of hydraulic fractures. This active seismic source approach has the potential for cost-effective real-time monitoring of hydraulic fracturing operations and can provide critical constraints on the optimization of unconventional field development.


2021 ◽  
Author(s):  
Zamzam Mohammed Ahmed ◽  
Abrar Mohammed Alostad ◽  
Liu Pei Wu

Abstract The North Kuwait Jurassic Gas (NKJG) reservoirs pose productivity challenges due to their geological heterogeneity, complex tectonic settings, high stress anisotropy, high pore pressure, and high bottom-hole temperature. Additionally, high natural fracture intensity in clustered areas play an important role in the wells hydrocarbon deliverability. These challenges are significant in field development starting from well design and stimulation up to production stages. The Gas Field Development Group (GFDG) are introducing for the first time in Kuwait new completion designs at high fracturing intensity; open-hole Multi Stage Completions (MSC), 4.5" Monobores and hybrid completions along with customized and efficient stimulation methods. This development strategy designed to overcome reservoir difficulties and enhance the well performance during initial testing and long-term production phases. At early stages of production, most of the wells were stimulated with simple matrix acidizing jobs and this method was sufficient to reach commercial production in conventional reservoirs. However, the reservoir depletion trend has negatively affected stimulation effectiveness and the wells performance in the recent years; hence, short and long-term solutions introduced to manage the sub-hydrostatic reservoir pressure. Our current focus is on the short-term stimulation solutions as they are relatively easier to apply compared to the long-term solutions that require additional resources, which are not available in the country. As a result, the stimulation methods, specifically the hydraulic fracturing treatments, increased production dramatically compared to previous years and it applied across North Kuwait Fields in conventional and unconventional reservoirs to reach the production targets of 2020-2021. The hydraulic fracturing treatment designs improved during the 2020-2021 fiscal year. The number of operations tripled compared to before and alternative chemical treatments with new fracturing designs implemented. In addition, these treatments executed across different well completions and reservoir properties. The objectives behind each fracturing treatment were different; for example: discovering new areas, re-stimulating under-performing wells, fracturing unconventional reservoirs, etc. Some promising wells did not flow as per expectation after matrix acidizing treatments despite the logs showing good reservoir quality similar to offset wells with good production. After re-stimulating with acid fracturing, the wells performed much better and one of them set a benchmark as the best producer amongst the offset wells. This paper evaluates the gaps in developing NKJG reservoirs, including fracturing treatments and highlights of the pros/cons for each operation, which in future supports the improvement of stimulation job designs. Moreover, it reveals the future requirements that control the operation success and how to reduce the well cleaning time post-fracturing in the event of low reservoir pressure. Finally, it describes how the outcome of the analyses directly assists reaching the production targets; since NKJG's production mainly depends on stimulation techniques.


2015 ◽  
Author(s):  
Kevin Bate ◽  
Mauricio Lane ◽  
Alexey Moiseenkov ◽  
Sergey Nadezhdin

Abstract Appraisal drilling of a recently discovered Cambrian-aged gas field in Oman is indicating that the field may have significant amounts of gas locked in a challenging deep, hot, and highly pressured reservoir environment. The low porosity and permeability values of the Amin reservoir allow the classification of the reservoir as a tight gas sand. The variability of reservoir properties, both spatially and vertically, makes it difficult to standardize perforation and fracture stimulation design which, in turn, complicates delineation of a development plan for the project. One of the difficulties relates to uncertainty in vertical propagation of hydraulic fractures. Fracture height based on evaluation of radioactive tracer logs indicates that vertical barriers to fracture propagation may relate to specific geologic zones in the reservoir. The mapping of the reservoir zones into undeveloped areas of the field would allow selection of primary and secondary production targets based on the specific physical properties of the individual zones. To assume that no barrier to fracture propagation exists between separate production units may lead to attempts to stimulate them synchronously, which would be disadvantageous for several reasons, such as premature screenouts and incomplete coverage of gas-bearing layers. Reserves booking and allocation can also be jeopardized should the fractures propagate into undesired zones.


2015 ◽  
Author(s):  
Frank F. Chang ◽  
Paul D. Berger ◽  
Christie H. Lee

Abstract Proppants are used to keep hydraulic fractures open, allowing for reservoir fluids to flow back after external pressure is withdrawn. Proppants are carried by the hydraulic fracturing fluid containing multiple components such as polymers, breakers, or friction reducing agent. These proppant systems have certain disadvantages such as formation and fracture permeability damage due to the viscous gel residue, risk of early screen-out and reduced effective propped area due to proppant excessive leakoff or settling, and abrasion to the pumping equipment and tubular. Acid fracturing is another fracturing technique. It is used in carbonate reservoirs, in which the acid etches the fracture faces to create conductive path. The drawbacks of acid fracturing include short acid etch length due to rapid acid-carbonate rock reaction rate and corrosion to the tubular. The oil and gas industry has been relying on these hydraulic fracturing techniques to proliferate production from low permeability reservoirs, and has made significantly advancement in tools and chemicals used in the fracturing processes. However, the maximized production and recovery is still unattainable due to the reasons mentioned above. This paper discusses a novel chemical compositions and process to overcome the challenges encountered by the current fracturing techniques. The goal is to convert injected fracturing fluid into a highly permeable proppant pack in-situ. Since the fracturing fluid itself forms the proppant, it can penetrate the entire fracture length, height, and complex network, maximizing the effective fracture area and stimulated reservoir volume. The rendered particle size can be significantly larger than conventional proppants without the concern of screen-out. The in-situ formed proppants have strength sufficient to resist fracture closure stress. In addition, no polymer is required to suspend the proppant; therefore no gel residue will be left to damage fracture conductivity. Though it is in its preliminary development stage, interesting and encouraging test results have been obtained. Formulations, photos, and mechanical properties of in-situ generated proppants will be presented in this paper.


2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Desheng Zhou ◽  
Peng Zheng ◽  
Jiao Peng ◽  
Pei He

Creating complex fracture network by hydraulic fracturing operation in unconventional reservoir development is the key factor of effective exploitation. The mechanism of creating a fracture network is not clear up to today. Conventional hydraulic fracturing theory is based on tensile failure of a rock, and a hydraulic fracture is widely accepted as propagating along the direction of in situ maximum horizontal principal stress in the industry. Based on rock elastic mechanics and fracture mechanics, considering combined tensile and shear failures, the maximum circumferential strain criterion and boundary element method (BEM), the paper studies the induced stress and its variation during a fracture propagation, the interaction between two or more hydraulic fractures, and the interaction between a hydraulic fracture and a natural crack. The paper shows that a propagating fracture will produce induced stresses on surrounding rock and form a stress shadow. Instead of propagation along the direction of maximum horizontal principal stress as a single fracture, the outside two fractures of two or more hydraulic fractures are exclusive and turning away from each other. A natural crack may be awaked and extend at its both tips by a propagating hydraulic fracture before their intersection, and the hydraulic fracture may deflect toward the natural crack. The interaction between a hydraulic fracture and a natural crack depends on the transverse distance between them and the initial length of the crack. The shorter the transverse distance and the longer the crack length are, the higher the possibility of the crack to be awaked is. The research results are helpful in understanding complex fracture network and may be used in determining hydraulic fracture places to create a complex fracture network.


SPE Journal ◽  
2021 ◽  
pp. 1-15
Author(s):  
Wei Fu ◽  
Joseph P. Morris ◽  
Pengcheng Fu ◽  
Jixiang Huang ◽  
Christopher S. Sherman ◽  
...  

Summary This work aims to address a challenge posed by recent observations of tightly spaced hydraulic fractures in core samples from the hydraulic fracturing test site (HFTS) in the Middle Wolfcamp Formation. Many fractures in retrieved cores have subfoot spacing, which is at odds with conventional models in which usually one hydraulic fracture is initiated per cluster. Models assuming a single fracture at each cluster, although a common practice, often predict excessive fracture propagation that is inconsistent with microseismic observation. Here, we aim to develop a numerical approach to effectively account for densely spaced hydraulic fractures in field-scale simulations. Because it is impractical to explicitly model all aforementioned fractures, we develop a new upscaling law that enables existing simulation tools to predict reservoir response to fracture swarms. The upscaling law is derived based on an energy equivalence argument and validated through multiscale simulations using a high-fidelity code, GEOS. The swarming fractures are first modeled with a spacing that is much smaller than the cluster spacing; these fractures are then approximated by an upscaled, single fracture based on the proposed upscaling law. The upscaled fracture is shown to successfully match the energy input rate and produce the total fracture aperture and average propagation length of the explicitly simulated swarm. Afterward, the upscaling approach is further implemented in 3D field-scale simulations and validated against the HFTS microseismic data of a horizontal well. Our results show that hydraulic fracture swarming can significantly affect fracture propagation behaviors compared with the propagation of single fractures as assumed by conventional modeling approaches. Under the considered situations, the conventional treatment yields fast propagation speed that far exceeds that indicated by the microseismic data. We also illustrate that this discrepancy can be reduced readily through the implementation of the upscaling law. Our results demonstrate the importance of accounting for the fracture swarming effect in field-scale simulations and the efficacy of this approach to enable realistic predictions of reservoir responses to fracture swarms, without the need to model tightly spaced fractures individually.


Sign in / Sign up

Export Citation Format

Share Document