Novel Application of Epoxy Resin to Eliminate Sustained Casing Pressure Without Costly Downhole Well Intervention - Case History from East Kalimantan, Indonesia

2021 ◽  
Author(s):  
Yogi Adi Guna ◽  
Michael Frank ◽  
Novianto Rochman ◽  
Thomas Herdian Abi Putra ◽  
Mohammad Irvan ◽  
...  

Abstract An operator recorded 1100 psi of sustained casing pressure between a 9-5/8" casing and a 3.5" production tubing annulus seven days after the cementing operation was completed for the 3.5" production tubing. A production logging run was performed, and results indicated gas was flowing from a zone 86 feet below the 9-5/8" casing shoe. As per the operator's standard, such a situation suggests subsequent well completion operations cannot be processed and must be remediated. The most common solution for such situations is to perforate and squeeze to ensure zonal isolation in the zone from which the gas is flowing. Due to the slim tubing size this operation can be difficult, and there exists a high risk of leaving set cement inside the 3.5" tubing. Furthermore, drilling would require extensive time with a coil tubing unit and in the worst case could lead to the loss of the well. To provide a dependable barrier for long term well integrity, a novel approach consisting of epoxy resin was discussed. A highly ductile, solids-free resin was designed and tailored to seal off communication from the gas source to surface. The void space in the annulus was estimated to be less than 5 bbl. An equipment package was prepared to mix and pump the resin into the annulus. Resin was pumped through the wellhead casing valve using a hesitation squeeze technique with the maximum surface pressure limited to 3000 psi. Once all resin was pumped, the casing valve was closed to allow enough time for the resin to build compressive strength. The job was planned to be performed in multiple stages consisting of smaller volumes. The job was completed in two stages, and the annular pressure was reduced. On the first job, 1 bbl of resin was mixed and injected into the annulus. The pressure build up was decreased from 550 psi per day to 27 psi per day. To lower the annular pressure further, a second resin job was performed using 0.35 bbl resin volume, which further reduced the annular pressure build up to 25 psi within 3 days. No further stages were performed as this was considered a safe working pressure for the well owner. After 2 months no annular pressure was observed. The application of this tailored resin helped to improve the wells integrity under these circumstances in this high-pressure gas well. Epoxy resin with its solid-free nature and deep penetration capabilities helped to seal off a very tight flow path. This application of pumping resin through the wellhead to overcome annular gas pressure can be an option when the flow path is strictly limited, or downhole well intervention is very difficult and risky.

2021 ◽  
Author(s):  
Bipin Jain ◽  
Abhijeet Tambe ◽  
Dylan Waugh ◽  
Moises MunozRivera ◽  
Rianne Campbell

Abstract Several injection wells in Prudhoe Bay, Alaska exhibit sustained casing pressure (SCP) between the production tubing and the inner casing. The diagnostics on these wells have shown communication due to issues with casing leaks. Conventional cement systems have historically been used in coiled-tubing-delivered squeeze jobs to repair the leaks. However, even when these squeeze jobs are executed successfully, there is no guarantee in the short or long term that the annular communication is repaired. Many of these injector wells develop SCP in the range of 300-400 psi post-repair. It has been observed that the SCP development can reoccur immediately after annulus communication repair, or months to years after an injector well is put back on injection. Once SCP is developed the well cannot be operated further. A new generation of cement system was used to overcome the remedial challenge presented in these injector wells. This document provides the successful application of a specialized adaptive cement system conveyed to the problematic zone with the advantage of using coiled tubing equipment for optimum delivery of the remedial treatment.


Author(s):  
Tim Klose ◽  
M. Carme Chaparro ◽  
Frank Schilling ◽  
Christoph Butscher ◽  
Steffen Klumbach ◽  
...  

AbstractBorehole leakage is a common and complex issue. Understanding the fluid flow characteristics of a cemented area inside a borehole is crucial to monitor and quantify the wellbore integrity as well as to find solutions to minimise existing leakages. In order to improve our understanding of the flow behaviour of cemented boreholes, we investigated experimental data of a large-scale borehole leakage tests by means of numerical modelling using three different conceptual models. The experiment was performed with an autoclave system consisting of two vessels bridged by a cement-filled casing. After a partial bleed-off at the well-head, a sustained casing pressure was observed due to fluid flow through the cement–steel composite. The aim of our simulations is to investigate and quantify the permeability of the cement–steel composite. From our model results, we conclude that the flow occurred along a preferential flow path at the cement–steel interface. Thus, the inner part of the cement core was impermeable during the duration of the experiment. The preferential flow path can be described as a highly permeable and highly porous area with an aperture of about $$5\,\upmu \mathrm{m}$$ 5 μ m and a permeability of $$3 \cdot 10^{-12}\,\mathrm{m}^{2}$$ 3 · 10 - 12 m 2 (3 Darcy). It follows that the fluid flow characteristics of a cemented area inside a borehole cannot be described using one permeability value for the entire cement–steel composite. Furthermore, it can be concluded that the quality of the cement and the filling process regarding the cement–steel interface is crucial to minimize possible well leakages.


2011 ◽  
Author(s):  
Salim Taoutaou ◽  
Jorge Andres Vargas Bermea ◽  
Pietro Bonomi ◽  
Bassam Elatrache ◽  
Christian Pasturel ◽  
...  

2012 ◽  
Vol 430-432 ◽  
pp. 2067-2070
Author(s):  
Zhang Zhi ◽  
Tai Ping Xiao ◽  
Zheng Mao Chen ◽  
Tai He Shi

Currently the annulus pressure of gas well becomes more common, so the safe production of several wells has been seriously affected. The annulus pressure mechanism is relatively complex, and it can be approximately classified into annulus pressure induced by temperature effect, by ballooning effect and by leakage or seal failure etc. The article mainly focuses on the annulus pressure mechanism induced by ballooning effect and the corresponding calculation model. For the tubing column with two ends fixed and closed, when tubing internal pressure is larger than the external extrusion force, the external diameter of the tubing column balloons (i.e. ballooning effect). It reduces the annular volume between the tubing and the casing, and consequentially induces annulus pressure. Based on the fundamental theory of elastic-plastic mechanics, the tubing column is simplified into the thin walled cylinder so as to deduce the relation models between the internal pressure and its swell capacity and A annulus pressure value, which provide theoretical support for safety evaluation on annulus pressure and the next treatment program.


2021 ◽  
pp. 1-15
Author(s):  
Hans Joakim Skadsem ◽  
Dave Gardner ◽  
Katherine Beltrán Jiménez ◽  
Amit Govil ◽  
Guillermo Obando Palacio ◽  
...  

Summary Important functions of well cement are to provide zonal isolation behind casing strings and to mechanically support and protect the casing. Experience suggests that many wells develop integrity problems related to fluid migration or loss of zonal isolation, which often manifest themselves in sustained casing pressure (SCP) or surface casing vent flows. Because the characteristic sizes of realistic migration paths are typically only on the order of tens of micrometers, detecting, diagnosing, and eventually treating migration paths remain challenging problems for the industry. As part of the recent abandonment operation of an offshore production well, sandwich joints comprising production casing, annulus cement, and intermediate casing were cut and retrieved to surface. Two of these joints were subjected to an extensive test campaign, including surface relogging, chemical analyses, and seepage testing, to better understand the ultrasonic-log response and its potential connection to rates of fluid migration. One of the joints contained an apparently well-defined top of cement (TOC) with settled barite on top. Although the settled material initially provided a complete seal against gas flow, the sealing capability was irreversibly lost as part of subsequent testing. The two joints have effective microannuli sizes in the range of tens of micrometers, in agreement with previous reports on SCP buildup in wells. On a local scale, however, we observed significant variations in cement quality from both the log results and the seepage testing. Further, we found qualitatively very good correlations between seepage-test results and the log results for the bond between cement and casings. The best bonded cement was found directly above a production casing collar, where a short segment of well-bonded cement prevented measurable steady-state seepage of nitrogen. Additional tests involving internal pressurization of the production casing suggested that certain annular-seepage characteristics are well-described by an effective microannulus at the cement/casing interfaces. We consider the two sandwich joints to be highly representative and relevant for similar mature wells that are to be abandoned.


2021 ◽  
Author(s):  
Emmanuel Therond ◽  
Yaseen Najwani ◽  
Mohamed Al Alawi ◽  
Muneer Hamood Al Noumani ◽  
Yaqdhan Khalfan Al Rawahi ◽  
...  

Abstract The Khazzan and Ghazeer gas fields in the Sultanate of Oman are projected to deliver production of gas and condensate for decades to come. Over the life of the project, around 300 wells will be drilled, with a target drilling and completion time of 42 days for a vertical well. The high intensity of the well construction requires a standardized and robust approach for well cementing to deliver high-quality well integrity and zonal isolation. The wells are designed with a surface casing, an intermediate casing, a production casing or production liner, and a cemented completion. Most sections are challenging in terms of zonal isolation. The surface casing is set across a shallow-water carbonate formation, prone to lost circulation and shallow water flow. The production casing or production liner is set across fractured limestones and gas-bearing zones that can cause A- and B-Annulus sustained casing pressure if not properly isolated. The cemented completion is set across a high-temperature sandstone reservoir with depletion and the cement sheath is subjected to very high pressure and temperature variations during the fracturing treatment. A standardized cement blend is implemented for the entire field from the top section down to the reservoir. This blend works over a wide slurry density and temperature range, has expanding properties, and can sustain the high temperature of the reservoir section. For all wells, the shallow-water flow zone on the surface casing is isolated by a conventional 11.9 ppg lightweight lead slurry, capped with a reactive sodium silicate gel, and a 15.8 ppg cement slurry pumped through a system of one-inch flexible pipes inserted in the casing/conductor annulus. The long intermediate casing is cemented in one stage using a conventional lightweight slurry containing a high-performance lost circulation material to seal the carbonate microfractures. The excess cement volume is based on loss volume calculated from a lift pressure analysis. The cemented completion uses a conventional 13.7 - 14.5 ppg cement slurry; the cement is pre-stressed in situ with an expanding agent to prevent cement failure when fracturing the tight sandstone reservoir with high-pressure treatment. Zonal isolation success in a high-intensity drilling environment is assessed through key performance zonal isolation indicators. Short-term zonal isolation indicators are systematically used to evaluate cement barrier placement before proceeding with installing the next casing string. Long-term zonal isolation indicators are used to evaluate well integrity over the life of the field. A-Annulus and B-Annulus well pressures are monitored through a network of sensors transmitting data in real time. Since the standardization of cementing practices in the Khazzan field short-term job objectives met have increased from 76% to 92 % and the wells with sustained casing pressure have decreased from 22 % to 0%.


2021 ◽  
Author(s):  
Farah Shakina Ezani ◽  
Myat Thuzar ◽  
Avinash Kishore Kumar ◽  
Chee Hen Lau

Abstract Sustained casing pressure (SCP) is a very costly event for any operator either at production phase or at the end of a well’s lifecycle. SCP is a result of incomplete hydraulic isolation across hydrocarbon bearing zone. In one of the gas fields in Malaysia, notoriously known for shallow gas hazard, drilled development wells which have reportedly been suffering SCP. In the past, various improvements in cement slurry design and placement methods were deployed in order to provide complete zonal isolation, especially at the shallow gas sand, yet SCP issue was encountered occasionally. In the current development campaign, different strategy to providing annulus sealing was adopted. This paper discusses proactive steps taken in the slurry design, fit together with the dual stage cementing approach, as a primary means of placing cement above the shallow hazard interval. During the design phase, essential key parameters that would lead to successful placement of cement in the annulus as well as unique slurry design that suits for two stage cementing methods were studied. Risk involved in first stage cementing is one of the most important steps that should be analyzed in detail and put mitigation measures in place to ensure the second stage cement job can be performed as planned. In addition to the slurry properties, such as fluid-loss value, gas-tightness, etc., thickening time and top of cement (TOC) of the lead slurry in the first stage cement job has become enormously critical in designing dual stage cementing job in order to assure cement ports in the stage collar are not covered with hard cement forcing the termination of second stage job prematurely. Besides cementing design, careful selection of the stage collar location and casing annulus packer in the string is also of significant importance in leading to successful two stage cement job. Two development wells with above approached has been delivered and no sustained casing pressure has been experienced. This proactive approach to use two stage cementing as primary plan has proven to successfully eliminate the risk of SCP, which was a frequent struggle in their sister wells drilled with primary cementing in the past in the same field. The risk analysis combined with careful considerations of critical cementing design parameters and selection of stage tool location have become a novel approach to combat against SCP in this gas field.


2021 ◽  
Author(s):  
Junwen Dai ◽  
Ahmed Elsayed Fouda

Abstract Early detection of corrosion in well casings is of great importance to oil and gas well management. A typical well completion includes a production tubing inside a number of nested casings, which provide necessary well integrity and environmental protections. A multifrequency electromagnetic pipe inspection tool with multiple transmitter and receiver arrays was designed to accurately estimate the individual wall thicknesses of up to five nested pipes. The tool uses an axis-symmetric forward model to invert for wall thicknesses, among other pipe parameters. However, in cases where production occurs from two or more segregated zones, the well is generally equipped with more than one production tubing, which breaks the axial symmetry. In this paper, we show how the tool can further be employed to inspect the integrity of non-nested tubulars, such as dual completions. The performance of the tool is demonstrated using a full-scale yard mockup with known defects. A data-processing workflow, including multizone calibration and model-based inversion, is proposed to estimate the tubulars electrical conductivity, magnetic permeability, wall thickness, and eccentricity. An in-situ, multizone calibration method is applied to remove adjacent tubings influence, thus enabling accurate estimation of the thickness of outer casings without having to pull out the production tubing. In order to demonstrate the capabilities of the tool in wells with dual completions, a log was run in a 150 ft-long yard mockup with two strings of 2⅞ inch. tubing, two outer casing strings, and four different man-made defects on the casings. The tool is logged inside each of the tubing strings, and the two logs are inverted for the thickness and eccentricity of the tubing as well as the thickness of outer casings. Results from the yard test reveal that when the tool is logged in one tubing, it can accurately detect various kinds of defects on outer casings, even in the presence of a second tubing. The interference from the second tubing is shown to be minimal due to the employed calibration algorithm. A high degree of consistency is seen between the logs run in each tubing string. This suggests that if the goal is solely to monitor corrosion in the outer casings, it suffices to run the tool in only one of the tubing strings, further cutting nonproductive time. The techniques presented here enable pipe integrity monitoring without pulling the production tubings; tubings, therefore, minimizing inspection time and cost. The information provided by this tool can significantly improve the efficiency of well intervention operations, especially in areas with high corrosion rates.


Sign in / Sign up

Export Citation Format

Share Document