The Role of Legacy Seismic in Enhancing the Image in the Current Seismic Data – Abu Dhabi: Case Study

2021 ◽  
Author(s):  
Ramy Elasrag ◽  
Thuraya Al Ghafri ◽  
Faaeza Al Katheer ◽  
Yousuf Al-Aufi ◽  
Ivica Mihaljevic ◽  
...  

Abstract Acquiring surface seismic data can be challenging in areas of intense human activities, due to presence of infrastructures (roads, houses, rigs), often leaving large gaps in the fold of coverage that can span over several kilometers. Modern interpolation algorithms can interpolate up to a certain extent, but quality of reconstructed seismic data diminishes as the acquisition gap increases. This is where vintage seismic acquisition can aid processing and imaging, especially if previous acquisition did not face the same surface obstacles. In this paper we will present how the legacy seismic survey has helped to fill in the data gaps of the new acquisition and produced improved seismic image. The new acquisition survey is part of the Mega 3D onshore effort undertaken by ADNOC, characterized by dense shot and receiver spacing with focus on full azimuth and broadband. Due to surface infrastructures, data could not be completely acquired leaving sizable gap in the target area. However, a legacy seismic acquisition undertaken in 2014 had access to such gap zones, as infrastructures were not present at the time. Legacy seismic data has been previously processed and imaged, however simple post-imaging merge would not be adequate as two datasets were processed using different workflows and imaging was done using different velocity models. In order to synchronize the two datasets, we have processed them in parallel. Data matching and merging were done before regularization. It has been regularized to radial geometry using 5D Matching Pursuit with Fourier Interpolation (MPFI). This has provided 12 well sampled azimuth sectors that went through surface consistent processing, multiple attenuation, and residual noise attenuation. Near surface model was built using data-driven image-based static (DIBS) while reflection tomography was used to build the anisotropic velocity model. Imaging was done using Pre-Stack Kirchhoff Depth Migration. Processing legacy survey from the beginning has helped to improve signal to noise ratio which assisted with data merging to not degrade the quality of the end image. Building one near surface model allowed both datasets to match well in time domain. Bringing datasets to the same level was an important condition before matching and merging. Amplitude and phase analysis have shown that both surveys are aligned quite well with minimal difference. Only the portion of the legacy survey that covers the gap was used in the regularization, allowing MPFI to reconstruct missing data. Regularized data went through surface multiple attenuation and further noise attenuation as preconditioning for migration. Final image that is created using both datasets has allowed target to be imaged better.

2019 ◽  
Vol 38 (9) ◽  
pp. 670-670
Author(s):  
Margarita Corzo ◽  
Tim Brice ◽  
Ray Abma

Seismic acquisition has undergone a revolution over the last few decades. The volume of data acquired has increased exponentially, and the quality of seismic images obtained has improved tremendously. While the total cost of acquiring a seismic survey has increased, the cost per trace has dropped precipitously. Land surveys have evolved from sparse 2D lines acquired with a few dozen receivers to densely sampled 3D multiazimuth surveys. Marine surveys that once may have consisted of a small boat pulling a single cable have evolved to large streamer vessels pulling multiple cables and air-gun arrays and to ocean-bottom detectors that require significant fleets to place the detectors, shoot the sources, and provide support. These surveys collect data that are wide azimuth and typically fairly well sampled.


1996 ◽  
Vol 36 (1) ◽  
pp. 104
Author(s):  
H.R.B. Wecker ◽  
V. Ziolkowski ◽  
G.D. Powis

Over the last two decades, minimal gas exploration was undertaken in the northeastern Cooper Basin. It was viewed the area held negligible gas potential due to the perceived absence of conventional anticlinal traps and the marginal reservoir quality of the Permian sandstones.With the award of permit ATP 549P to Mount Isa Mines Limited in mid-1993, available seismic and well data were reviewed to highlight potential fault-controlled traps in the region and to define areas likely to contain more favourable reservoir sandstones. A vibroseis seismic survey provided the initial prospects and leads inventory upon which the 1994 drilling program was based. Four prospects were tested resulting in three gas discoveries.Based on these encouraging results, an additional phase of seismic acquisition was completed to increase the prospect inventory. Thereafter, a five well program was undertaken. Whilst the two appraisal wells were successful, three wildcat wells failed due to ineffective trapping.A completion and testing program has been initiated to further evaluate the field discoveries.From an exploration viewpoint, the recognition of a consistently productive sandstone in the basal Toolachee Formation within a broad fairway across the eastern ATP 549P permit block was a significant result which has important implications for future activities. Within the fairway, gas flows varying from 0.4 MMcfd up to 6.0 MMcfd were measured on openhole tests. In addition, substantial gas volumes in low permeability sandstones within the Patchawarra Formation have been defined.These discoveries, coupled with the number of prospects and leads and the proposed gas pipeline to Mount Isa and to southeast Queensland markets, provide strong impetus to the continued evaluation of this northern extension of the Cooper Basin gas province.


2020 ◽  
Author(s):  
Zhongyuan Jin

<p>In recent years, seismic interferometry (SI) has been widely used in passive seismic data, it allows to retrieve new seismic responses among physical receivers by cross-correlation or multidimensional deconvolution (MDD). Retrieval of reflected body waves from passive seismic data has been proved to be feasible. Marchenko method, as a new technique, retrieves Green’s functions directly inside the medium without any physical receiver there. Marchenko method retrieves precise Green’s functions and the up-going and down-going Green’s functions can be used in target-oriented Marchenko imaging, and internal multiples related artifacts in Marchenko image can be suppressed. </p><p>Conventional Marchenko imaging uses active seismic data, in this abstract, we propose the method of passive seismic Marchenko imaging (PSMI) which retrieves Green’s functions from ambient noise signal. PSMI employs MDD method to obtain the reflection response without free-surface interaction as an input for Marchenko algorithm, such that free-surface multiples in the retrieved shot gathers can be eliminated, besides, internal multiples don’t contribute to final Marchenko image, which means both free-surface multiples and internal multiples have been taken into account. Although the retrieved shot gathers are contaminated by noises, the up-going and down-going Green’s functions can be still retrieved. Results of numerical tests validate PSMI’s feasibility and robustness. PSMI provides a new way to image the subsurface structure, it combines the low-cost property of passive seismic acquisition and target-oriented imaging property of Marchenko imaging, as well as the advantage that there are no artifacts caused by internal multiples and free-surface multiples.</p><p>Overall, the significant difference between PSMI and conventional Marchenko imaging is that passive seismic data is used into Marchenko scheme, which extends the Marchenko imaging to passive seismic field. Passive seismic Marchenko imaging avoids the effects of free-surface multiples and internal multiples in the retrieved shot gathers. PSMI combines the low-cost property of passive seismic acquisition and target-oriented imaging property of Marchenko imaging which is promising in future field seismic survey.</p><p>This work is supported by the Fundamental Research Funds for the Central Universities (JKY201901-03). </p>


Geophysics ◽  
2002 ◽  
Vol 67 (4) ◽  
pp. 1275-1285 ◽  
Author(s):  
Xu Chang ◽  
Yike Liu ◽  
Hui Wang ◽  
Fuzhong Li ◽  
Jing Chen

A 3‐D tomographic inversion approach based on a surface‐consistent model for static corrections is presented in this paper. Direct, reflected, and refracted waves are used simultaneously to update the near‐surface model. We analyze the characteristics of the first‐break traveltime in complicated low‐velocity layers. To improve the accuracy for the velocity model, the various first‐break times from direct, reflected, and refracted waves are considered for model inversion. A fractal algorithm which overcomes the error caused by wavelet shape differences is applied to pick first breaks. It also overcomes the leg jump of refractions. The method can pick a large number of first breaks automatically. The raypaths and traveltimes are calculated with a 3‐D ray tracer that does not increase computation time for complicated geological models. Our method can determine the raypath associated with minimum traveltimes regardless of wave mode (direct, refracted, or reflected). We use a least‐squares approach in conjunction with a matrix decomposition to reconstruct a 3‐D velocity model from the actual first‐break times obtained from 3‐D data. Finally, long‐ and short‐wavelength static corrections are calculated concurrently, based on the reconstructed velocity profile. The method can be applied to wide‐line profiles, crooked lines, and 2‐D and 3‐D seismic survey geometries. The results applied to a real 3‐D data example indicate that the 3‐D tomographic static corrections are effective for field data.


Geophysics ◽  
2014 ◽  
Vol 79 (6) ◽  
pp. B243-B252 ◽  
Author(s):  
Peter Bergmann ◽  
Artem Kashubin ◽  
Monika Ivandic ◽  
Stefan Lüth ◽  
Christopher Juhlin

A method for static correction of time-lapse differences in reflection arrival times of time-lapse prestack seismic data is presented. These arrival-time differences are typically caused by changes in the near-surface velocities between the acquisitions and had a detrimental impact on time-lapse seismic imaging. Trace-to-trace time shifts of the data sets from different vintages are determined by crosscorrelations. The time shifts are decomposed in a surface-consistent manner, which yields static corrections that tie the repeat data to the baseline data. Hence, this approach implies that new refraction static corrections for the repeat data sets are unnecessary. The approach is demonstrated on a 4D seismic data set from the Ketzin [Formula: see text] pilot storage site, Germany, and is compared with the result of an initial processing that was based on separate refraction static corrections. It is shown that the time-lapse difference static correction approach reduces 4D noise more effectively than separate refraction static corrections and is significantly less labor intensive.


Geophysics ◽  
2008 ◽  
Vol 73 (6) ◽  
pp. B109-B115 ◽  
Author(s):  
Michael V. DeAngelo ◽  
Paul E. Murray ◽  
Bob A. Hardage ◽  
Randy L. Remington

Using 2D four-component ocean-bottom-cable (2D 4-C OBC) seismic data processed in common-receiver gathers, we developed robust [Formula: see text] and [Formula: see text] interval velocities for the near-seafloor strata. A vital element of the study was to implement iterative interpretation techniques to correlate near-seafloor P-P and P-SV images. Initially, depth-equivalent P-P and P-SV layers were interpreted by visually matching similar events in both seismic modes. Complementary 1D ray-tracing analyses then determined interval values of subsea-floor [Formula: see text] and [Formula: see text] velocities across a series of earth layers extending from the seafloor to below the base of the hydrate stability zone (BHSZ) to further constrain these interpretations. Iterating interpretation of depth-equivalent horizons with velocity analyses allowed us to converge on physically reasonable velocity models. Simultaneous [Formula: see text] and [Formula: see text] velocity analysis provided additional model constraints in areas where data quality of one reflection mode (usually [Formula: see text] in the near-seafloor environments) would not provide adequate information to derive reliable velocity information.


Geophysics ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. U39-U49 ◽  
Author(s):  
Daniele Colombo ◽  
Federico Miorelli ◽  
Ernesto Sandoval ◽  
Kevin Erickson

Industry practices for near-surface analysis indicate difficulties in coping with the increased number of channels in seismic acquisition systems, and new approaches are needed to fully exploit the resolution embedded in modern seismic data sets. To achieve this goal, we have developed a novel surface-consistent refraction analysis method for low-relief geology to automatically derive near-surface corrections for seismic data processing. The method uses concepts from surface-consistent analysis applied to refracted arrivals. The key aspects of the method consist of the use of common midpoint (CMP)-offset-azimuth binning, evaluation of mean traveltime and standard deviation for each bin, rejection of anomalous first-break (FB) picks, derivation of CMP-based traveltime-offset functions, conversion to velocity-depth functions, evaluation of long-wavelength statics, and calculation of surface-consistent residual statics through waveform crosscorrelation. Residual time lags are evaluated in multiple CMP-offset-azimuth bins by crosscorrelating a pilot trace with all the other traces in the gather in which the correlation window is centered at the refracted arrival. The residuals are then used to build a system of linear equations that is simultaneously inverted for surface-consistent shot and receiver time shift corrections plus a possible subsurface residual term. All the steps are completely automated and require a fraction of the time needed for conventional near-surface analysis. The developed methodology was successfully performed on a complex 3D land data set from Central Saudi Arabia where it was benchmarked against a conventional tomographic work flow. The results indicate that the new surface-consistent refraction statics method enhances seismic imaging especially in portions of the survey dominated by noise.


2017 ◽  
Vol 5 (3) ◽  
pp. SO11-SO19
Author(s):  
Lei Fu ◽  
Sherif M. Hanafy

Full-waveform inversion of land seismic data tends to get stuck in a local minimum associated with the waveform misfit function. This problem can be partly mitigated by using an initial velocity model that is close to the true velocity model. This initial starting model can be obtained by inverting traveltimes with ray-tracing traveltime tomography (RT) or wave-equation traveltime (WT) inversion. We have found that WT can provide a more accurate tomogram than RT by inverting the first-arrival traveltimes, and empirical tests suggest that RT is more sensitive to the additive noise in the input data than WT. We present two examples of applying WT and RT to land seismic data acquired in western Saudi Arabia. One of the seismic experiments investigated the water-table depth, and the other one attempted to detect the location of a buried fault. The seismic land data were inverted by WT and RT to generate the P-velocity tomograms, from which we can clearly identify the water table depth along the seismic survey line in the first example and the fault location in the second example.


Solid Earth ◽  
2016 ◽  
Vol 7 (3) ◽  
pp. 943-958 ◽  
Author(s):  
Xènia Ogaya ◽  
Juan Alcalde ◽  
Ignacio Marzán ◽  
Juanjo Ledo ◽  
Pilar Queralt ◽  
...  

Abstract. Hontomín (N of Spain) hosts the first Spanish CO2 storage pilot plant. The subsurface characterization of the site included the acquisition of a 3-D seismic reflection and a circumscribed 3-D magnetotelluric (MT) survey. This paper addresses the combination of the seismic and MT results, together with the available well-log data, in order to achieve a better characterization of the Hontomín subsurface. We compare the structural model obtained from the interpretation of the seismic data with the geoelectrical model resulting from the MT data. The models correlate well in the surroundings of the CO2 injection area with the major structural differences observed related to the presence of faults. The combination of the two methods allowed a more detailed characterization of the faults, defining their geometry, and fluid flow characteristics, which are key for the risk assessment of the storage site. Moreover, we use the well-log data of the existing wells to derive resistivity–velocity relationships for the subsurface and compute a 3-D velocity model of the site using the 3-D resistivity model as a reference. The derived velocity model is compared to both the predicted and logged velocity in the injection and monitoring wells, for an overall assessment of the computed resistivity–velocity relationships. The major differences observed are explained by the different resolution of the compared geophysical methods. Finally, the derived velocity model for the near surface is compared with the velocity model used for the static corrections in the seismic data. The results allowed extracting information about the characteristics of the shallow unconsolidated sediments, suggesting possible clay and water content variations. The good correlation of the velocity models derived from the resistivity–velocity relationships and the well-log data demonstrate the potential of the combination of the two methods for characterizing the subsurface, in terms of its physical properties (velocity, resistivity) and structural/reservoir characteristics. This work explores the compatibility of the seismic and magnetotelluric methods across scales highlighting the importance of joint interpretation in near surface and reservoir characterization.


Geophysics ◽  
2014 ◽  
Vol 79 (4) ◽  
pp. T199-T217 ◽  
Author(s):  
Abdulaziz M. Almuhaidib ◽  
M. Nafi Toksöz

In land seismic data, scattering from surface and near-surface heterogeneities adds complexity to the recorded signal and masks weak primary reflections. To understand the effects of near-surface heterogeneities on seismic reflections, we simulated seismic-wave scattering from arbitrary-shaped, shallow, subsurface heterogeneities through the use of a perturbation method for elastic waves and finite-difference forward modeling. The near-surface scattered wavefield was modeled by looking at the difference between the calculated incident (i.e., in the absence of scatterers) and the total wavefields. Wave propagation was simulated for several earth models with different near-surface characteristics to isolate and quantify the influence of scattering on the quality of the seismic signal. The results indicated that the direct surface waves and the upgoing reflections were scattered by the near-surface heterogeneities. The scattering took place from body waves to surface waves and from surface waves to body waves. The scattered waves consisted mostly of body waves scattered to surface waves and were, generally, as large as, or larger than, the reflections. They often obscured weak primary reflections and could severely degrade the image quality. The results indicated that the scattered energy depended strongly on the properties of the shallow scatterers and increased with increasing impedance contrast, increasing size of the scatterers relative to the incident wavelength, decreasing depth of the scatterers, and increasing attenuation factor of the background medium. Also, sources deployed at depth generated weak surface waves, whereas deep receivers recorded weak surface and scattered body-to-surface waves. The analysis and quantified results helped in the understanding of the scattering mechanisms and, therefore, could lead to developing new acquisition and processing techniques to reduce the scattered surface wave and enhance the quality of the seismic image.


Sign in / Sign up

Export Citation Format

Share Document