Passive Seismic Marchenko Imaging

Author(s):  
Zhongyuan Jin

<p>In recent years, seismic interferometry (SI) has been widely used in passive seismic data, it allows to retrieve new seismic responses among physical receivers by cross-correlation or multidimensional deconvolution (MDD). Retrieval of reflected body waves from passive seismic data has been proved to be feasible. Marchenko method, as a new technique, retrieves Green’s functions directly inside the medium without any physical receiver there. Marchenko method retrieves precise Green’s functions and the up-going and down-going Green’s functions can be used in target-oriented Marchenko imaging, and internal multiples related artifacts in Marchenko image can be suppressed. </p><p>Conventional Marchenko imaging uses active seismic data, in this abstract, we propose the method of passive seismic Marchenko imaging (PSMI) which retrieves Green’s functions from ambient noise signal. PSMI employs MDD method to obtain the reflection response without free-surface interaction as an input for Marchenko algorithm, such that free-surface multiples in the retrieved shot gathers can be eliminated, besides, internal multiples don’t contribute to final Marchenko image, which means both free-surface multiples and internal multiples have been taken into account. Although the retrieved shot gathers are contaminated by noises, the up-going and down-going Green’s functions can be still retrieved. Results of numerical tests validate PSMI’s feasibility and robustness. PSMI provides a new way to image the subsurface structure, it combines the low-cost property of passive seismic acquisition and target-oriented imaging property of Marchenko imaging, as well as the advantage that there are no artifacts caused by internal multiples and free-surface multiples.</p><p>Overall, the significant difference between PSMI and conventional Marchenko imaging is that passive seismic data is used into Marchenko scheme, which extends the Marchenko imaging to passive seismic field. Passive seismic Marchenko imaging avoids the effects of free-surface multiples and internal multiples in the retrieved shot gathers. PSMI combines the low-cost property of passive seismic acquisition and target-oriented imaging property of Marchenko imaging which is promising in future field seismic survey.</p><p>This work is supported by the Fundamental Research Funds for the Central Universities (JKY201901-03). </p>

2022 ◽  
Vol 41 (1) ◽  
pp. 54-61
Author(s):  
Moyagabo K. Rapetsoa ◽  
Musa S. D. Manzi ◽  
Mpofana Sihoyiya ◽  
Michael Westgate ◽  
Phumlani Kubeka ◽  
...  

We demonstrate the application of seismic methods using in-mine infrastructure such as exploration tunnels to image platinum deposits and geologic structures using different acquisition configurations. In 2020, seismic experiments were conducted underground at the Maseve platinum mine in the Bushveld Complex of South Africa. These seismic experiments were part of the Advanced Orebody Knowledge project titled “Developing technologies that will be used to obtain information ahead of the mine face.” In these experiments, we recorded active and passive seismic data using surface nodal arrays and an in-mine seismic land streamer. We focus on analyzing only the in-mine active seismic portion of the survey. The tunnel seismic survey consisted of seven 2D profiles in exploration tunnels, located approximately 550 m below ground surface and a few meters above known platinum deposits. A careful data-processing approach was adopted to enhance high-quality reflections and suppress infrastructure-generated noise. Despite challenges presented by the in-mine noisy environment, we successfully imaged the platinum deposits with the aid of borehole data and geologic models. The results open opportunities to adapt surface-based geophysical instruments to address challenging in-mine environments for mineral exploration.


Author(s):  
D. Hollis ◽  
C. Cox ◽  
R. Clayton ◽  
F. Lin ◽  
D. Li ◽  
...  

2021 ◽  
Author(s):  
Ramy Elasrag ◽  
Thuraya Al Ghafri ◽  
Faaeza Al Katheer ◽  
Yousuf Al-Aufi ◽  
Ivica Mihaljevic ◽  
...  

Abstract Acquiring surface seismic data can be challenging in areas of intense human activities, due to presence of infrastructures (roads, houses, rigs), often leaving large gaps in the fold of coverage that can span over several kilometers. Modern interpolation algorithms can interpolate up to a certain extent, but quality of reconstructed seismic data diminishes as the acquisition gap increases. This is where vintage seismic acquisition can aid processing and imaging, especially if previous acquisition did not face the same surface obstacles. In this paper we will present how the legacy seismic survey has helped to fill in the data gaps of the new acquisition and produced improved seismic image. The new acquisition survey is part of the Mega 3D onshore effort undertaken by ADNOC, characterized by dense shot and receiver spacing with focus on full azimuth and broadband. Due to surface infrastructures, data could not be completely acquired leaving sizable gap in the target area. However, a legacy seismic acquisition undertaken in 2014 had access to such gap zones, as infrastructures were not present at the time. Legacy seismic data has been previously processed and imaged, however simple post-imaging merge would not be adequate as two datasets were processed using different workflows and imaging was done using different velocity models. In order to synchronize the two datasets, we have processed them in parallel. Data matching and merging were done before regularization. It has been regularized to radial geometry using 5D Matching Pursuit with Fourier Interpolation (MPFI). This has provided 12 well sampled azimuth sectors that went through surface consistent processing, multiple attenuation, and residual noise attenuation. Near surface model was built using data-driven image-based static (DIBS) while reflection tomography was used to build the anisotropic velocity model. Imaging was done using Pre-Stack Kirchhoff Depth Migration. Processing legacy survey from the beginning has helped to improve signal to noise ratio which assisted with data merging to not degrade the quality of the end image. Building one near surface model allowed both datasets to match well in time domain. Bringing datasets to the same level was an important condition before matching and merging. Amplitude and phase analysis have shown that both surveys are aligned quite well with minimal difference. Only the portion of the legacy survey that covers the gap was used in the regularization, allowing MPFI to reconstruct missing data. Regularized data went through surface multiple attenuation and further noise attenuation as preconditioning for migration. Final image that is created using both datasets has allowed target to be imaged better.


Author(s):  
Laura Pinzon-Rincon ◽  
François Lavoué ◽  
Aurélien Mordret ◽  
Pierre Boué ◽  
Florent Brenguier ◽  
...  

Abstract Seismologists are eagerly seeking new and preferably low-cost ways to map and track changes in the complex structure of the top few kilometers of the crust. By understanding it better, they can build on what is known regarding important, practical issues. These include telling us whether imminent earthquakes and volcanic eruptions are generating telltale underground signs of hazard, about mitigation of induced seismicity such as from deep injection of wastewater, how the Earth and its atmosphere couple, and where accessible natural resources are. Passive seismic imaging usually relies on blind correlations within extended recordings of Earth’s ceaseless “hum” or coda of well-mixed, small vibrations. In this article, we propose a complementary approach. It is seismic interferometry using opportune sources—specifically ones not stationary in time and moving in a well-understood configuration. Its interpretation relies on an accurate understanding of how these sources radiate seismic waves, precise timing, careful placement of pairs of listening stations, and seismic phase differentiation (surface and body waves). Massive freight trains were only recently recognized as such a persistent, powerful cultural (human activity-caused) seismic source. One train passage may generate a tremor with an energy output of a magnitude 1 earthquake and be detectable for up to 100 km from the track. We discuss the source mechanisms of train tremors and review the basic theory on sources. Finally, we present case studies of body- and surface-wave retrieval as an aid to mineral exploration in Canada and to monitoring of a southern California fault zone. We believe noise recovery from this new signal source, together with dense data acquisition technologies such as nodes or distributed acoustic sensing, will deeply transform our ability to monitor activity in the shallow crust at sharpened resolution in time and space.


Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. V201-V209 ◽  
Author(s):  
David Harris ◽  
Julie Albaric ◽  
Bettina Goertz-Allmann ◽  
Daniela Kuehn ◽  
Sebastian Sikora ◽  
...  

Mechanical and electromagnetic interference (process noise) is common in seismic data recorded to monitor and characterize induced microseismicity during industrial injection and production operations. We have developed a case study of adaptive cancellation to reduce observed process noise in passive seismic data recorded during the 2014 injection test at the [Formula: see text] Lab research site in Spitsbergen. Our results suggest that adaptive cancellation is effective when major sources of interference are readily identifiable. Adaptive cancellation requires these sources to be instrumented separately but conceivably with low-cost sensors. We suggest that adaptive cancellation should be considered routinely when planning microseismic monitoring operations when strong industrial or anthropogenic noise is anticipated. Interference suppression algorithms are sufficiently simple that they could be implemented in acquisition systems to avoid archival of noise reference data.


Geophysics ◽  
2001 ◽  
Vol 66 (1) ◽  
pp. 49-49 ◽  
Author(s):  
Thomas L. Davis

Multicomponent seismology requires recording of seismic data with three‐ and sometimes four‐component receivers. The three components measure displacement of the ground, usually in two horizontal and one vertical directions. The fourth component is a measurement of pressure, which is used in sea‐bottom surveys. Measuring three components of ground displacement enables the recording of compressional (P) and shear (S) waves which represent the full complement of “body” waves in seismology. Earthquake seismologists have been using the full complement for years to interpret the structure of our living planet; however, exploration seismologists have been slow to bring multicomponent seismology to the forefront of their measurement system. This is finally changing. Thanks to new seismic acquisition recording systems, it is now feasible to economically record multicomponent seismic data in both land and marine (sea‐bottom) settings. In the future, all land or sea‐bottom seismic data will be recorded by multicomponent technology, thereby bringing us the next wave of exploration geophysics as we begin to “see the unseen.”


Geophysics ◽  
2001 ◽  
Vol 66 (3) ◽  
pp. 953-963 ◽  
Author(s):  
Luc T. Ikelle

Marine vertical cable (VC) data contain primaries, receiver ghosts, free‐surface multiples, and internal multiples just like towed‐streamer data. However, the imaging of towed‐streamer data is based on primary reflections, while the emerging imaging algorithms of VC data tend to use the receiver ghosts of primary reflections instead of the primaries themselves. I present an algorithm for attenuating primaries, free‐surface multiples, and the receiver ghosts of free‐surface multiples while preserving the receiver ghosts of primaries. My multiple attenuation algorithm of VC data is based on an inverse scattering approach known, which is a predict‐then‐subtract method. It assumes that surface seismic data are available or that they can be computed from VC data after an up/down wavefield separation at the receiver locations (streamer data add to VC data some of the wave paths needed for multiple attenuation). The combination of surface seismic data with VC data allows one to predict free‐surface multiples and receiver ghosts as well as the receiver ghosts of primary reflections. However, if the direct wave arrivals are removed from the VC data, this combination will not predict the receiver ghosts of primary reflections. I use this property to attenuate primaries, free‐surface multiples, and receiver ghosts from VC data, preserving only the receiver ghosts of primaries. This method can be used for multicomponent ocean bottom cable data (i.e., arrays of sea‐floor geophones and hydrophones) without any modification to attenuate primaries, free‐surface multiples, and the receiver ghosts of free‐surface multiples while preserving the receiver ghosts of primaries.


2021 ◽  
Vol 14 (5) ◽  
pp. 440
Author(s):  
Eirini Siozou ◽  
Vasilios Sakkas ◽  
Nikolaos Kourkoumelis

A new methodology, based on Fourier transform infrared spectroscopy equipped with an attenuated total reflectance accessory (ATR FT-IR), was developed for the determination of diclofenac sodium (DS) in dispersed commercially available tablets using chemometric tools such as partial least squares (PLS) coupled with discriminant analysis (PLS-DA). The results of PLS-DA depicted a perfect classification of the tablets into three different groups based on their DS concentrations, while the developed model with PLS had a sufficiently low root mean square error (RMSE) for the prediction of the samples’ concentration (~5%) and therefore can be practically used for any tablet with an unknown concentration of DS. Comparison with ultraviolet/visible (UV/Vis) spectrophotometry as the reference method revealed no significant difference between the two methods. The proposed methodology exhibited satisfactory results in terms of both accuracy and precision while being rapid, simple and of low cost.


Sign in / Sign up

Export Citation Format

Share Document