3‐D tomographic static correction

Geophysics ◽  
2002 ◽  
Vol 67 (4) ◽  
pp. 1275-1285 ◽  
Author(s):  
Xu Chang ◽  
Yike Liu ◽  
Hui Wang ◽  
Fuzhong Li ◽  
Jing Chen

A 3‐D tomographic inversion approach based on a surface‐consistent model for static corrections is presented in this paper. Direct, reflected, and refracted waves are used simultaneously to update the near‐surface model. We analyze the characteristics of the first‐break traveltime in complicated low‐velocity layers. To improve the accuracy for the velocity model, the various first‐break times from direct, reflected, and refracted waves are considered for model inversion. A fractal algorithm which overcomes the error caused by wavelet shape differences is applied to pick first breaks. It also overcomes the leg jump of refractions. The method can pick a large number of first breaks automatically. The raypaths and traveltimes are calculated with a 3‐D ray tracer that does not increase computation time for complicated geological models. Our method can determine the raypath associated with minimum traveltimes regardless of wave mode (direct, refracted, or reflected). We use a least‐squares approach in conjunction with a matrix decomposition to reconstruct a 3‐D velocity model from the actual first‐break times obtained from 3‐D data. Finally, long‐ and short‐wavelength static corrections are calculated concurrently, based on the reconstructed velocity profile. The method can be applied to wide‐line profiles, crooked lines, and 2‐D and 3‐D seismic survey geometries. The results applied to a real 3‐D data example indicate that the 3‐D tomographic static corrections are effective for field data.

Geophysics ◽  
2015 ◽  
Vol 80 (2) ◽  
pp. B23-B33
Author(s):  
Ralph Bridle ◽  
Shelton Hubbell

The near-surface model for static corrections requires a consistent regional depth/velocity model, while incorporating the fidelity of additional static solutions. We addressed the challenge of tying new seismic acquisition to a depth/velocity model, in which there are static corrections derived independently for each seismic data. The generalized method is a four-step procedure that starts with the grafting of the additional shifts to the recipient static model. The time shifts were then adjusted to constrain the long wavelength at defined locations. The next procedure was to split the time shifts into high- and low-frequency components. The final procedure inverted the high frequency into the shallowest layers and the long wavelength to the velocity from base of model to datum. The result was an updated regional depth/velocity model into which new 2D depth/velocity models could be tied. The generalized solution would work with any additional near-surface static corrections, which could include, and not be limited to, those built from surface waves, remote sensing, and joint inversion with nonseismic data. The inversion of the additional time shifts was primarily intended to provide a solution to their tie and any image improvement is serendipitous. We progressively learned lessons from a simple inversion and achieved the generalized solution.


Geophysics ◽  
2021 ◽  
pp. 1-50
Author(s):  
Filipe Borges ◽  
Martin Landrø

The use of permanent arrays for continuous reservoir monitoring has become a reality in the past decades, with Ekofisk and Valhall being its flagships. One of the possibilities when such solution is available is to passively record data while acquisitions with an active source are ongoing in nearby areas. These recordings might contain ultrafar-offset data (over 30 km), which are hardly used in standard reservoir exploration and monitoring, as they are mostly a combination of normal modes, deep reflections and diving waves. We present here data from the Valhall Life of Field Seismic array, recorded while an active seismic survey was being acquired in Ekofisk, in April 2014. Despite the lack of control on source firing time and position, analysis of the data shows that the normal modes are remarkably clear, overcoming the ambient noise in the field. The normal modes can be well explained by a two-layer acoustic model, while a combination of diving waves and refracted waves can be fairly well reproduced with a regional 1D velocity model. We suggest a method to use the far-offset recordings to monitor changes in the shallow sediments between source and receivers, both with and without a coherent seismic source in the area.


2018 ◽  
Vol 58 (2) ◽  
pp. 884
Author(s):  
Lianping Zhang ◽  
Haryo Trihutomo ◽  
Yuelian Gong ◽  
Bee Jik Lim ◽  
Alexander Karvelas

The Schlumberger Multiclient Exmouth 3D survey was acquired over the Exmouth sub-basin, North West Shelf Australia and covers 12 600 km2. One of the primary objectives of this survey was to produce a wide coverage of high quality imaging with advanced processing technology within an agreed turnaround time. The complexity of the overburden was one of the imaging challenges that impacted the structuration and image quality at the reservoir level. Unlike traditional full-waveform inversion (FWI) workflow, here, FWI was introduced early in the workflow in parallel with acquisition and preprocessing to produce a reliable near surface velocity model from a smooth starting model. FWI derived an accurate and detailed near surface model, which subsequently benefitted the common image point (CIP) tomography model updates through to the deeper intervals. The objective was to complete the FWI model update for the overburden concurrently with the demultiple stages hence reflection time CIP tomography could start with a reasonably good velocity model upon completion of the demultiple process.


Author(s):  
Gleb S. Chernyshov ◽  
◽  
Anton A. Duchkov ◽  
Aleksander A. Nikitin ◽  
Ivan Yu. Kulakov ◽  
...  

The problem of tomographic inversion is non–unique and requires regularization to solve it in a stable manner. It is highly non–trivial to choose between various regularization approaches or tune the regularization parameters themselves. We study the influence of one particular regularization parameter on the resolution and accuracy the tomographic inversion for the near–surface model building. We propose another regularization parameter, which allows to increase the accuracy of model building.


Geophysics ◽  
2009 ◽  
Vol 74 (1) ◽  
pp. G1-G15 ◽  
Author(s):  
Sawasdee Yordkayhun ◽  
Ari Tryggvason ◽  
Ben Norden ◽  
Christopher Juhlin ◽  
Björn Bergman

A 3D reflection seismic survey was performed in 2005 at the Ketzin carbon dioxide [Formula: see text] pilot geological-storage site (the [Formula: see text] project) near Berlin, Germany, to image the geological structure of the site to depths of about [Formula: see text]. Because of the acquisition geometry, frequency limitations of the source, and artefacts of the data processing, detailed structures shallower than about [Formula: see text] were unclear. To obtain structural images of the shallow subsurface, we applied 3D traveltime tomography to data near the top of the Ketzin anticline, where faulting is present. Understanding the shallow subsurface structure is important for long-term monitoring aspects of the project after [Formula: see text] has been injected into a saline aquifer at about [Formula: see text] depth. We used a 3D traveltime tomography algorithm based on a combination ofsolving for 3D velocity structure and static corrections in the inversion process to account for artefacts in the velocity structure because of smearing effects from the unconsolidated cover. The resulting velocity model shows low velocities of [Formula: see text] in the uppermost shallow subsurface of the study area. The velocity reaches about [Formula: see text] at a depth of [Formula: see text]. This coincides approximately with the boundary between Quaternary units, which contain the near-surface freshwater reservoir and the Tertiary clay aquitard. Correlation of tomographic images with a similarity attribute slice at [Formula: see text] (about [Formula: see text] depth) indicates that at least one east-west striking fault zone observed in the reflection data might extend into the Tertiary unit. The more detailed images of the shallow subsurface from this study provided valuable information on this potentially risky area.


Geophysics ◽  
1998 ◽  
Vol 63 (1) ◽  
pp. 25-38 ◽  
Author(s):  
Xianhuai Zhu ◽  
Burke G. Angstman ◽  
David P. Sixta

Through the use of iterative turning‐ray tomography followed by wave‐equation datuming (or tomo‐datuming) and prestack depth migration, we generate accurate prestack images of seismic data in overthrust areas containing both highly variable near‐surface velocities and rough topography. In tomo‐datuming, we downward continue shot records from the topography to a horizontal datum using velocities estimated from tomography. Turning‐ray tomography often provides a more accurate near‐surface velocity model than that from refraction statics. The main advantage of tomo‐datuming over tomo‐statics (tomography plus static corrections) or refraction statics is that instead of applying a vertical time‐shift to the data, tomo‐datuming propagates the recorded wavefield to the new datum. We find that tomo‐datuming better reconstructs diffractions and reflections, subsequently providing better images after migration. In the datuming process, we use a recursive finite‐difference (FD) scheme to extrapolate wavefield without applying the imaging condition, such that lateral velocity variations can be handled properly and approximations in traveltime calculations associated with the raypath distortions near the surface for migration are avoided. We follow the downward continuation step with a conventional Kirchhoff prestack depth migration. This results in better images than those migrated from the topography using the conventional Kirchhoff method with traveltime calculation in the complicated near surface. Since FD datuming is only applied to the shallow part of the section, its cost is much less than the whole volume FD migration. This is attractive because (1) prestack depth migration usually is used iteratively to build a velocity model, so both efficiency and accuracy are important factors to be considered; and (2) tomo‐datuming can improve the signal‐to‐noise (S/N) ratio of prestack gathers, leading to more accurate migration velocity analysis and better images after depth migration. Case studies with synthetic and field data examples show that tomo‐datuming is especially helpful when strong lateral velocity variations are present below the topography.


2020 ◽  
Vol 8 (3) ◽  
pp. T651-T665
Author(s):  
Yalin Li ◽  
Xianhuai Zhu ◽  
Gengxin Peng ◽  
Liansheng Liu ◽  
Wensheng Duan

Seismic imaging in foothills areas is challenging because of the complexity of the near-surface and subsurface structures. Single seismic surveys often are not adequate in a foothill-exploration area, and multiple phases with different acquisition designs within the same block are required over time to get desired sampling in space and azimuths for optimizing noise attenuation, velocity estimation, and migration. This is partly because of economic concerns, and it is partly because technology is progressing over time, creating the need for unified criteria in processing workflows and parameters at different blocks in a study area. Each block is defined as a function of not only location but also the acquisition and processing phase. An innovative idea for complex foothills seismic imaging is presented to solve a matrix of blocks and tasks. For each task, such as near-surface velocity estimation and static corrections, signal processing, prestack time migration, velocity-model building, and prestack depth migration, one or two best service companies are selected to work on all blocks. We have implemented streamlined processing efficiently so that Task-1 to Task-n progressed with good coordination. Application of this innovative approach to a mega-project containing 16 3D surveys covering more than [Formula: see text] in the Kelasu foothills, northwestern China, has demonstrated that this innovative approach is a current best practice in complex foothills imaging. To date, this is the largest foothills imaging project in the world. The case study in Kelasu successfully has delivered near-surface velocity models using first arrivals picked up to 3500 m offset for static corrections and 9000 m offset for prestack depth migration from topography. Most importantly, the present megaproject is a merge of several 3D surveys, with the merge performed in a coordinated, systematic fashion in contrast to most land megaprojects. The benefits of this approach and the strategies used in processing data from the various subsurveys are significant. The main achievement from the case study is that the depth images, after the application of the near-surface velocity model estimated from the megasurveys, are more continuous and geologically plausible, leading to more accurate seismic interpretation.


2021 ◽  
Author(s):  
Ramy Elasrag ◽  
Thuraya Al Ghafri ◽  
Faaeza Al Katheer ◽  
Yousuf Al-Aufi ◽  
Ivica Mihaljevic ◽  
...  

Abstract Acquiring surface seismic data can be challenging in areas of intense human activities, due to presence of infrastructures (roads, houses, rigs), often leaving large gaps in the fold of coverage that can span over several kilometers. Modern interpolation algorithms can interpolate up to a certain extent, but quality of reconstructed seismic data diminishes as the acquisition gap increases. This is where vintage seismic acquisition can aid processing and imaging, especially if previous acquisition did not face the same surface obstacles. In this paper we will present how the legacy seismic survey has helped to fill in the data gaps of the new acquisition and produced improved seismic image. The new acquisition survey is part of the Mega 3D onshore effort undertaken by ADNOC, characterized by dense shot and receiver spacing with focus on full azimuth and broadband. Due to surface infrastructures, data could not be completely acquired leaving sizable gap in the target area. However, a legacy seismic acquisition undertaken in 2014 had access to such gap zones, as infrastructures were not present at the time. Legacy seismic data has been previously processed and imaged, however simple post-imaging merge would not be adequate as two datasets were processed using different workflows and imaging was done using different velocity models. In order to synchronize the two datasets, we have processed them in parallel. Data matching and merging were done before regularization. It has been regularized to radial geometry using 5D Matching Pursuit with Fourier Interpolation (MPFI). This has provided 12 well sampled azimuth sectors that went through surface consistent processing, multiple attenuation, and residual noise attenuation. Near surface model was built using data-driven image-based static (DIBS) while reflection tomography was used to build the anisotropic velocity model. Imaging was done using Pre-Stack Kirchhoff Depth Migration. Processing legacy survey from the beginning has helped to improve signal to noise ratio which assisted with data merging to not degrade the quality of the end image. Building one near surface model allowed both datasets to match well in time domain. Bringing datasets to the same level was an important condition before matching and merging. Amplitude and phase analysis have shown that both surveys are aligned quite well with minimal difference. Only the portion of the legacy survey that covers the gap was used in the regularization, allowing MPFI to reconstruct missing data. Regularized data went through surface multiple attenuation and further noise attenuation as preconditioning for migration. Final image that is created using both datasets has allowed target to be imaged better.


1990 ◽  
Vol 80 (5) ◽  
pp. 1245-1271 ◽  
Author(s):  
Y.-G. Li ◽  
P. C. Leary

Abstract Two instances of fault zone trapped seismic waves have been observed. At an active normal fault in crystalline rock near Oroville in northern California, trapped waves were excited with a surface source and recorded at five near-fault borehole depths with an oriented three-component borehole seismic sonde. At Parkfield, California, a borehole seismometer at Middle Mountain recorded at least two instances of the fundamental and first higher mode seismic waves of the San Andreas fault zone. At Oroville recorded particle motions indicate the presence of both Love and Rayleigh normal modes. The Love-wave dispersion relation derived for an idealized wave guide with velocity structure determined by body-wave travel-time inversion yields seismograms of the fundamental mode that are consistent with the observed Love-wave amplitude and frequency. Applying a similar velocity model to the Parkfield observations, we obtain a good fit to the trapped wavefield amplitude, frequency, dispersion, and mode time separation for an asymmetric San Andreas fault zone structure—a high-velocity half-space to the southwest, a low-velocity fault zone, a transition zone containing the borehole seismometer, and an intermediate velocity half-space to the northeast. In the Parkfield borehole seismic data set, the locations (depth and offset normal to fault plane) of natural seismic events which do or do not excite trapped waves are roughly consistent with our model of the low velocity zone. We conclude that it is feasible to obtain near-surface borehole records of fault zone trapped waves. Because trapped modes are excited only by events close to the fault zone proper—thereby fixing these events in space relative to the fault—a wider investigation of possible trapped mode waveforms recorded by a borehole seismic network could lead to a much refined body-wave/tomographic velocity model of the fault and to a weighting of events as a function of offset from the fault plane. It is an open question whether near-surface sensors exist in a stable enough seismic environment to use trapped modes as an earth monitoring device.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE235-VE241 ◽  
Author(s):  
Juergen Fruehn ◽  
Ian F. Jones ◽  
Victoria Valler ◽  
Pranaya Sangvai ◽  
Ajoy Biswal ◽  
...  

Imaging in deep-water environments poses a specific set of challenges, both in data preconditioning and velocity model building. These challenges include scattered, complex 3D multiples, aliased noise, and low-velocity shallow anomalies associated with channel fills and gas hydrates. We describe an approach to tackling such problems for data from deep water off the east coast of India, concentrating our attention on iterative velocity model building, and more specifically the resolution of near-surface and other velocity anomalies. In the region under investigation, the velocity field is complicated by narrow buried canyons ([Formula: see text] wide) filled with low-velocity sediments, which give rise to severe pull-down effects; possible free-gas accumulation below an extensive gas-hydrate cap, causing dimming of the image below (perhaps as a result of absorption); and thin-channel bodies with low-velocity fill. Hybrid gridded tomography using a conjugate gradient solver (with [Formula: see text] vertical cell size) was applied to resolve small-scale velocity anomalies (with thicknesses of about [Formula: see text]). Manual picking of narrow-channel features was used to define bodies too small for the tomography to resolve. Prestack depth migration, using a velocity model built with a combination of these techniques, could resolve pull-down and other image distortion effects in the final image. The resulting velocity field shows high-resolution detail useful in identifying anomalous geobodies of potential exploration interest.


Sign in / Sign up

Export Citation Format

Share Document