scholarly journals Numerical modeling of elastic-wave scattering by near-surface heterogeneities

Geophysics ◽  
2014 ◽  
Vol 79 (4) ◽  
pp. T199-T217 ◽  
Author(s):  
Abdulaziz M. Almuhaidib ◽  
M. Nafi Toksöz

In land seismic data, scattering from surface and near-surface heterogeneities adds complexity to the recorded signal and masks weak primary reflections. To understand the effects of near-surface heterogeneities on seismic reflections, we simulated seismic-wave scattering from arbitrary-shaped, shallow, subsurface heterogeneities through the use of a perturbation method for elastic waves and finite-difference forward modeling. The near-surface scattered wavefield was modeled by looking at the difference between the calculated incident (i.e., in the absence of scatterers) and the total wavefields. Wave propagation was simulated for several earth models with different near-surface characteristics to isolate and quantify the influence of scattering on the quality of the seismic signal. The results indicated that the direct surface waves and the upgoing reflections were scattered by the near-surface heterogeneities. The scattering took place from body waves to surface waves and from surface waves to body waves. The scattered waves consisted mostly of body waves scattered to surface waves and were, generally, as large as, or larger than, the reflections. They often obscured weak primary reflections and could severely degrade the image quality. The results indicated that the scattered energy depended strongly on the properties of the shallow scatterers and increased with increasing impedance contrast, increasing size of the scatterers relative to the incident wavelength, decreasing depth of the scatterers, and increasing attenuation factor of the background medium. Also, sources deployed at depth generated weak surface waves, whereas deep receivers recorded weak surface and scattered body-to-surface waves. The analysis and quantified results helped in the understanding of the scattering mechanisms and, therefore, could lead to developing new acquisition and processing techniques to reduce the scattered surface wave and enhance the quality of the seismic image.

Geophysics ◽  
2013 ◽  
Vol 78 (1) ◽  
pp. U1-U8 ◽  
Author(s):  
Benoit de Cacqueray ◽  
Philippe Roux ◽  
Michel Campillo ◽  
Stefan Catheline

We tested a small-scale experiment that is dedicated to the study of the wave separation algorithm and to the velocity variations monitoring problem itself. It handles the case in which velocity variations at depth are hidden by near-surface velocity fluctuations. Using an acquisition system that combines an array of sources and an array of receivers, coupled with controlled velocity variations, we tested the ability of beam-forming techniques to track velocity variations separately for body waves and surface waves. After wave separation through double beam forming, the arrival time variations of the different waves were measured through the phase difference between the extracted wavelets. Finally, a method was tested to estimate near-surface velocity variations using surface waves or shallow reflection and compute a correction to isolate target velocity variations at depth.


Geophysics ◽  
2005 ◽  
Vol 70 (2) ◽  
pp. V21-V29 ◽  
Author(s):  
Xander H. Campman ◽  
Kasper van Wijk ◽  
John A. Scales ◽  
Gérard C. Herman

When traveling through a complex overburden, upcoming seismic body waves can be disturbed by scattering from local heterogeneities. Currently, surface-consistent static and amplitude corrections correct for rapid variations in arrival times and amplitudes of a reflector, but these methods impose strong assumptions on the near-surface model. Observations on synthetic and laboratory experiments of near-surface scattering with densely sampled data suggest that removing noise from near-receiver scattering requires multichannel approaches rather than single-channel, near-surface corrections. In this paper we develop a wavefield-based imaging method to suppress surface waves scattered directly beneath the receivers. Using an integral-equation formulation, we account for near-surface heterogeneities by a surface impedance function. This impedance function is used to model scattered surface waves, excited by upcoming wavefronts. The final step in our algorithm is to subtract the scattered surface waves. We successfully apply this method to laboratory data of scattered surface waves, excited and monitored with a noncontacting acquisition system.


2021 ◽  
Author(s):  
Ramy Elasrag ◽  
Thuraya Al Ghafri ◽  
Faaeza Al Katheer ◽  
Yousuf Al-Aufi ◽  
Ivica Mihaljevic ◽  
...  

Abstract Acquiring surface seismic data can be challenging in areas of intense human activities, due to presence of infrastructures (roads, houses, rigs), often leaving large gaps in the fold of coverage that can span over several kilometers. Modern interpolation algorithms can interpolate up to a certain extent, but quality of reconstructed seismic data diminishes as the acquisition gap increases. This is where vintage seismic acquisition can aid processing and imaging, especially if previous acquisition did not face the same surface obstacles. In this paper we will present how the legacy seismic survey has helped to fill in the data gaps of the new acquisition and produced improved seismic image. The new acquisition survey is part of the Mega 3D onshore effort undertaken by ADNOC, characterized by dense shot and receiver spacing with focus on full azimuth and broadband. Due to surface infrastructures, data could not be completely acquired leaving sizable gap in the target area. However, a legacy seismic acquisition undertaken in 2014 had access to such gap zones, as infrastructures were not present at the time. Legacy seismic data has been previously processed and imaged, however simple post-imaging merge would not be adequate as two datasets were processed using different workflows and imaging was done using different velocity models. In order to synchronize the two datasets, we have processed them in parallel. Data matching and merging were done before regularization. It has been regularized to radial geometry using 5D Matching Pursuit with Fourier Interpolation (MPFI). This has provided 12 well sampled azimuth sectors that went through surface consistent processing, multiple attenuation, and residual noise attenuation. Near surface model was built using data-driven image-based static (DIBS) while reflection tomography was used to build the anisotropic velocity model. Imaging was done using Pre-Stack Kirchhoff Depth Migration. Processing legacy survey from the beginning has helped to improve signal to noise ratio which assisted with data merging to not degrade the quality of the end image. Building one near surface model allowed both datasets to match well in time domain. Bringing datasets to the same level was an important condition before matching and merging. Amplitude and phase analysis have shown that both surveys are aligned quite well with minimal difference. Only the portion of the legacy survey that covers the gap was used in the regularization, allowing MPFI to reconstruct missing data. Regularized data went through surface multiple attenuation and further noise attenuation as preconditioning for migration. Final image that is created using both datasets has allowed target to be imaged better.


2019 ◽  
Vol 110 (1) ◽  
pp. 110-126
Author(s):  
Leiph Preston ◽  
Christian Poppeliers ◽  
David J. Schodt

ABSTRACT As a part of the series of Source Physics Experiments (SPE) conducted on the Nevada National Security Site in southern Nevada, we have developed a local-to-regional scale seismic velocity model of the site and surrounding area. Accurate earth models are critical for modeling sources like the SPE to investigate the role of earth structure on the propagation and scattering of seismic waves. We combine seismic body waves, surface waves, and gravity data in a joint inversion procedure to solve for the optimal 3D seismic compressional and shear-wave velocity structures and earthquake locations subject to model smoothness constraints. Earthquakes, which are relocated as part of the inversion, provide P- and S-body-wave absolute and differential travel times. Active source experiments in the region augment this dataset with P-body-wave absolute times and surface-wave dispersion data. Dense ground-based gravity observations and surface-wave dispersion derived from ambient noise in the region fill in many areas where body-wave data are sparse. In general, the top 1–2 km of the surface is relatively poorly sampled by the body waves alone. However, the addition of gravity and surface waves to the body-wave dataset greatly enhances structural resolvability in the near surface. We discuss the methodology we developed for simultaneous inversion of these disparate data types and briefly describe results of the inversion in the context of previous work in the region.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 766
Author(s):  
Yi Jiang ◽  
Shuai Han ◽  
Chunxiang Shi ◽  
Tao Gao ◽  
Honghui Zhen ◽  
...  

Near-surface wind data are particularly important for Hainan Island and the South China Sea, and there is a wide range of wind data sources. A detailed understanding of the reliability of these datasets can help us to carry out related research. In this study, the hourly near-surface wind data from the High-Resolution China Meteorological Administration (CMA) Land Data Assimilation System (HRCLDAS) and the fifth-generation ECMWF atmospheric reanalysis data (ERA5) were evaluated by comparison with the ground automatic meteorological observation data for Hainan Island and the South China Sea. The results are as follows: (1) the HRCLDAS and ERA5 near-surface wind data trend was basically the same as the observation data trend, but there was a smaller bias, smaller root-mean-square errors, and higher correlation coefficients between the near-surface wind data from HRCLDAS and the observations; (2) the quality of HRCLDAS and ERA5 near-surface wind data was better over the islands of the South China Sea than over Hainan Island land. However, over the coastal areas of Hainan Island and island stations near Sansha, the quality of the HRCLDAS near-surface wind data was better than that of ERA5; (3) the quality of HRCLDAS near-surface wind data was better than that of ERA5 over different types of landforms. The deviation of ERA5 and HRCLDAS wind speed was the largest along the coast, and the quality of the ERA5 wind direction data was poorest over the mountains, whereas that of HRCLDAS was poorest over hilly areas; (4) the accuracy of HRCLDAS at all wind levels was higher than that of ERA5. ERA5 significantly overestimated low-grade winds and underestimated high-grade winds. The accuracy of HRCLDAS wind ratings over the islands of the South China Sea was significantly higher than that over Hainan Island land, especially for the higher wind ratings; and (5) in the typhoon process, the simulation of wind by HRCLDAS was closer to the observations, and its simulation of higher wind speeds was more accurate than the ERA5 simulations.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 975
Author(s):  
Antonio Copak ◽  
Vlatka Jirouš-Rajković ◽  
Nikola Španić ◽  
Josip Miklečić

Oriented strand board (OSB) is a commonly used structural wood-based panel for walls and roof siding, but recently the industry has become interested in OSB as a substrate for indoor and outdoor furniture. Particleboard is mainly used in furniture productions and has become popular as a construction material due to its numerous usage possibilities and inexpensive cost. Moisture is one of the most important factors affecting wood-based panel performance and the post-treatment conditions affected their affinity to water. When OSB and particleboard are used as substrates for coatings, their surface characteristics play an important role in determining the quality of the final product. Furthermore, roughness can significantly affect the interfacial phenomena such as adsorption, wetting, and adhesion which may have an impact on the coating performance. In this research particleboard and OSB panels were sanded, re-pressed and IR heated and the influence of surface treatments on hardness, roughness, wetting, water, and water vapour absorption was studied. Results showed that sanding improved the wetting of particleboard and OSB with water. Moreover, studied surface treatments increased water absorption and water penetration depth of OSB panels, and re-pressing had a positive effect on reducing the water vapour absorption of particleboard and OSB panels.


Geophysics ◽  
1951 ◽  
Vol 16 (1) ◽  
pp. 63-80 ◽  
Author(s):  
Milton B. Dobrin

A non‐mathematical summary is presented of the published theories and observations on dispersion, i.e., variation of velocity with frequency, in surface waves from earthquakes and in waterborne waves from shallow‐water explosions. Two further instances are cited in which dispersion theory has been used in analyzing seismic data. In the seismic refraction survey of Bikini Atoll, information on the first 400 feet of sediments below the lagoon bottom could not be obtained from ground wave first arrival times because shot‐detector distances were too great. Dispersion in the water waves, however, gave data on speed variations in the bottom sediments which made possible inferences on the recent geological history of the atoll. Recent systematic observations on ground roll from explosions in shot holes have shown dispersion in the surface waves which is similar in many ways to that observed in Rayleigh waves from distant earthquakes. Classical wave theory attributes Rayleigh wave dispersion to the modification of the waves by a surface layer. In the case of earthquakes, this layer is the earth’s crust. In the case of waves from shot‐holes, it is the low‐speed weathered zone. A comparison of observed ground roll dispersion with theory shows qualitative agreement, but it brings out discrepancies attributable to the fact that neither the theory for liquids nor for conventional solids applies exactly to unconsolidated near‐surface rocks. Additional experimental and theoretical study of this type of surface wave dispersion may provide useful information on the properties of the surface zone and add to our knowledge of the mechanism by which ground roll is generated in seismic shooting.


2015 ◽  
Author(s):  
Tongju Gong* ◽  
Miao Liu ◽  
Yiming Wang ◽  
Zhiwei Zhu ◽  
Baoqing Zhang

Geophysics ◽  
2021 ◽  
pp. 1-84
Author(s):  
Chunying Yang ◽  
Wenchuang Wang

Irregular acquisition geometry causes discontinuities in the appearance of surface wave events, and a large offset causes seismic records to appear as aliased surface waves. The conventional method of sampling data affects the accuracy of the dispersion spectrum and reduces the resolution of surface waves. At the same time, ”mode kissing” of the low-velocity layer and inhomogeneous scatterers requires a high-resolution method for calculating surface wave dispersion. This study tested the use of the multiple signal classification (MUSIC) algorithm in 3D multichannel and aliased wavefield separation. Azimuthal MUSIC is a useful method to estimate the phase velocity spectrum of aliased surface wave data, and it represent the dispersion spectra of low-velocity and inhomogeneous models. The results of this study demonstrate that mode-kissing affects dispersion imaging, and inhomogeneous scatterers change the direction of surface-wave propagation. Surface waves generated from the new propagation directions are also dispersive. The scattered surface wave has a new dispersion pattern different to that of the entire record. Diagonal loading was introduced to improve the robustness of azimuthal MUSIC, and numerical experiments demonstrate the resultant effectiveness of imaging aliasing surface waves. A phase-matched filter was applied to the results of azimuthal MUSIC, and phase iterations were unwrapped in a fast and stable manner. Aliased surface waves and body waves were separated during this process. Overall, field data demonstrate that azimuthal MUSIC and phase-matched filters can successfully separate aliased surface waves.


Sign in / Sign up

Export Citation Format

Share Document