A New Model for Predicting the Maximum Gas Entrapment Concentration in a Yield Stress Fluid

SPE Journal ◽  
2022 ◽  
pp. 1-15
Author(s):  
Shaowei Pan ◽  
Zhiyuan Wang ◽  
Baojiang Sun

Summary Gas entrapment is a typical phenomenon in gas-yield stress fluid two-phase flow, and most of the related research focuses on the entrapped condition of the single bubble. However, the amount of entrapped gas, which is more meaningful for engineering, is rarely involved. In this paper, a theoretical model for calculating the maximum gas entrapment concentration (MGEC) is established for the first time. The critical distance between horizontal and vertical entrapped bubbles was determined by the yielded region caused by the buoyancy and the coupled stress field around the multiple bubbles. The MGEC is the ratio of a single bubble volume to its domain volume, which is calculated from the distance between the vertical and the horizontal bubbles. By comparing with the experimental results, the average error of MGEC calculated by this model is 4.42%, and the maximum error is 7.32%. According to the prediction results of the model, an empirical equation that can be conveniently used for predicting MGEC is proposed.

2021 ◽  
Vol 933 ◽  
Author(s):  
Ali Pourzahedi ◽  
Emad Chaparian ◽  
Ali Roustaei ◽  
Ian A. Frigaard

We use computational methods to determine the minimal yield stress required in order to hold static a buoyant bubble in a yield-stress liquid. The static limit is governed by the bubble shape, the dimensionless surface tension ( $\gamma$ ) and the ratio of the yield stress to the buoyancy stress ( $Y$ ). For a given geometry, bubbles are static for $Y > Y_c$ , which we determine for a range of shapes. Given that surface tension is negligible, long prolate bubbles require larger yield stress to hold static compared with oblate bubbles. Non-zero $\gamma$ increases $Y_c$ and for large $\gamma$ the yield-capillary number ( $Y/\gamma$ ) determines the static boundary. In this limit, although bubble shape is important, bubble orientation is not. Two-dimensional planar and axisymmetric bubbles are studied.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hongtao Liu ◽  
Yan Jin ◽  
Bing Guo

The gas suspension phenomenon caused by the yield stress of the drilling fluid affects the accurate calculation of wellbore pressure after gas invasion. At present, most studies on the bubble suspension in the yield stress fluid focus on the single-bubble suspension condition and there are few studies on the gas suspension concentration. This paper carried out the GSC (gas suspension concentration) experiment in the simulated drilling fluid, xanthan solution, with different gas invasion methods. The GSC in the drilling fluid under the conditions of diffuse gas invasion and differential pressure gas invasion was simulated by using two methods of stir-depressurization and continuous ventilation. The results showed that when the size of a single bubble satisfied the single-bubble suspension condition, multiple bubbles can be suspended at the same time. The GSC is affected by the average size of the suspended bubbles, the yield stress of the drilling fluid, and the gas invasion modes. For different gas invasion modes, the empirical models of critical GSC related to the dimensionless number Bi are established. Compared with the experimental data, the relative error of the critical GSC in diffuse gas invasion is less than 6% and the relative error of the critical GSC in differential pressure gas invasion is less than 10%. The results of this work can provide guiding significance for accurate calculation of wellbore pressure.


2021 ◽  
Vol 11 (9) ◽  
pp. 3913
Author(s):  
Kaifeng Zheng ◽  
Jinguang Lü ◽  
Yingze Zhao ◽  
Jin Tao ◽  
Yuxin Qin ◽  
...  

The turbine blade is a key component in an aeroengine. Currently, measuring the turbine blade radiation temperature always requires obtaining the emissivity of the target surface in advance. However, changes in the emissivity and the reflected ambient radiation cause large errors in measurement results. In this paper, a three-wavelength radiation temperature measurement method was developed, without known emissivity, for reflection correction. Firstly, a three-dimensional dynamic reflection model of the turbine blade was established to describe the ambient radiation of the target blade based on the real surface of the engine turbine blade. Secondly, based on the reflection correction model, a three-wavelength radiation temperature measurement algorithm, independent of surface emissivity, was proposed to improve the measurement accuracy of the turbine blade radiation temperature in the engine. Finally, an experimental platform was built to verify the temperature measurement method. Compared with three conventional colorimetric methods, this method achieved an improved performance on blade temperature measurement, demonstrating a decline in the maximum error from 6.09% to 2.13% and in the average error from 2.82% to 1.20%. The proposed method would benefit the accuracy in the high-temperature measurement of turbine blades.


2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Tebogo Mokgehle ◽  
Ntakadzeni Madala ◽  
Wilson Gitari ◽  
Nikita Tavengwa

AbstractSolanum plants (Solanaceae) are renowned source of nutraceuticals and have widely been explored for their phytochemical constituents. This work investigated the effects of kosmotropic and chaotropic salts on the number of phytochemicals extracted from the leaves of a nutraceutical plant, Solanum retroflexum, and analyzed on the ultra-performance liquid chromatography hyphenated to a quadrupole time of flight mass spectrometer (UPLC-QTOF-MS) detector. Here, a total of 20 different compounds were putatively characterized. The majority of the identified compounds were polyphenols and glycoalkaloids. Another compound, caffeoyl malate was identified for the first time in this plant. Glycoalkaloids such as solanelagnin, solamargine, solasonine, β-solanine (I) and β-solanine (II) were found to be extracted by almost all the salts used herein. Kosmotrope salts, overall, were more efficient in extracting polar compounds with 4 more polyphenolic compounds extracted compared to the chaotropes. Chaotropes were generally more selective for the extraction of less polar compounds (glycoalkaloids) with 3 more extracted than the kosmotropes. The chaotrope and the kosmotrope that extracted the most metabolites were NaCl and Na2SO4, respectively, with 12 metabolites extracted for each salt. This work demonstrated that a comprehensive metabolome of S. retroflexum, more than what was previously reported on the same plant, can be achieved by application of kosmotropes and chaotropes as extractants with the aid of the Aqueous Two Phase Extraction approach. The best-performing salts, Na2SO4 or NaCl, could potentially be applied on a commercial scale, to meet the ever-growing demand of the studied metabolites. The Aqueous Two Phase Extraction technique was found to be efficient in simultaneous extraction of multiple metabolites which can be applied in metabolomics.


2009 ◽  
Vol 124 (5) ◽  
pp. 642-651 ◽  
Author(s):  
Nidhi Jain ◽  
James A. Singleton ◽  
Margrethe Montgomery ◽  
Benjamin Skalland

Since 1994, the Centers for Disease Control and Prevention has funded the National Immunization Survey (NIS), a large telephone survey used to estimate vaccination coverage of U.S. children aged 19–35 months. The NIS is a two-phase survey that obtains vaccination receipt information from a random-digit-dialed survey, designed to identify households with eligible children, followed by a provider record check, which obtains provider-reported vaccination histories for eligible children. In 2006, the survey was expanded for the first time to include a national sample of adolescents aged 13–17 years, called the NIS-Teen. This article summarizes the methodology used in the NIS-Teen. In 2008, the NIS-Teen was expanded to collect state-specific and national-level data to determine vaccination coverage estimates. This survey provides valuable information to guide immunization programs for adolescents.


2021 ◽  
Author(s):  
Rafael Gonzalez Hernandez ◽  
Afshin Goharzadeh ◽  
Mahmoud Meribout ◽  
Lyes Khezzar

Abstract This study presents an experimental investigation of two-phase swirl flow interacting with a circular bluff body. A horizontal and transparent multiphase flow loop is employed to investigate the dynamic of swirl flow close to the circular bluff body. Using high-speed photography, air-core development during the transition period is characterized. Analysis of both instantaneous and averaged images provides key information on air-core length and diameter for steady state conditions. The distance from air-core tip to the disk depends on a critical gas-liquid ratio (GLRc). The presence of air pocket behind the circular bluff body depends on a critical distance to the disk.


Sign in / Sign up

Export Citation Format

Share Document