The Milk River Shallow Gas Pool: Role of the Updip Water Trap and Connate Water in Gas Production From the Pool

Author(s):  
P.G. Berkenpas

2010 ◽  
Author(s):  
Samir Oumer ◽  
Hafidh Taufiqurrachman ◽  
Marie-Pascale Perruchot ◽  
Fata Yunus


1991 ◽  
Vol 13 (3) ◽  
pp. 337-359 ◽  
Author(s):  
H. SCOTT LANE ◽  
DAVID E. LANCASTER ◽  
A. TED WATSON
Keyword(s):  




2019 ◽  
Vol 2 (3) ◽  

The Role of Science in Developing Enhanced Oil & Gas Resources, Being Environmentally Sound, & Protecting Water Use • Global transformation with fossil fuel as primary source which have an effect on GDP, export/import changes, and global effects on pricing • History of evolution of oil and gas production in the United States • Global development: European Community, India, China, Brazil, Chile, Argentina and Mexico all have proven reserves • All time high extraction of tight natural gas and oil being environmentally sound and protecting domestic water supplies • Hydraulic fracking below potable water supplies • Drilling Diagrams – Vertical and Horizontal, Proper Casing  Record pace of pipeline construction to supply refineries & terminal ports  Pronounced effect on GDP • Natural gas treatment, delivery, from source to energy deficient countries exported as LNG • Cost subsidies and economic pricing of oil and gas extraction, hydro power, coal, nuclear, wind, and solar. Cost of power by region • There are no “Dry Holes” and more attributes of highly advanced geological technology



Fuel ◽  
2020 ◽  
Vol 259 ◽  
pp. 116207 ◽  
Author(s):  
Shikha Sharma ◽  
Vikas Agrawal ◽  
Rawlings N. Akondi


1992 ◽  
Vol 10 (2) ◽  
pp. 131-140
Author(s):  
Donald I. Hertzmark

In the 1980s, Asian energy markets expanded at a rapid rate to meet the surge in demand from Japan, Korea, and Taiwan. This demand boom coincided with an increase in non-OPEC oil production in the region. As oil production stabilizes, demand looks set to rise sharply, this time in the new Newly Industrialized Countries of Southeast Asia, Thailand, Malaysia, and Indonesia. Natural gas will play a key role in this expansion of energy use and could start to lead rather than follow oil markets. The leading role of natural gas will be especially strong if gas starts to make inroads in the high and middle ends of the barrel with oxygenated gasoline and compressed natural gas for trucks. At the bottom of the barrel, natural gas could increasingly usurp the role of residual fuel oil for environmental reasons. At the same time, regional refiners could find that residual oil is their leading source of additional feed for the new process units currently under discussion or planning. The supply outlook for natural gas is increasingly fraught with uncertainties as more of the region's supplies must come from distant areas. In particular, LNG supplies from Malaysia and Indonesia will need to be replaced by the early part of the next century as rising domestic demand eats into the exportable gas production. New sources include China, Siberia, Sakhalin Island, Papua New Guinea, and Canada. There will be intense competition to supply the Northeast Asian markets as the gas production in Southeast Asia is increasingly used within ASEAN.



1975 ◽  
Vol 38 (2) ◽  
pp. 78-83 ◽  
Author(s):  
JANEP. JENSEN ◽  
G. W. REINBOLD ◽  
C. J. WASHAM ◽  
E. R. VEDAMUTHU

Eight lots of Cheddar cheese were manufactured to determine the microbiological response and biochemical effects of two strains each of Streptococcus faecalis and Streptococcus durans used as supplemental starters in combination with a commercial lactic culture. Each lot consisted of a control vat of cheese manufactured with the lactic starter only and an experimental vat of cheese containing the lactic starter and one of the enterococcus strains. Combinations of two curing temperatures (7.2 and 12.8 C) and two early cooling treatments (air vs. brine cooling) were used for cheeses from each vat to determine environmental effects on the cheeses. Cheeses manufactured with S. faecalis had a somewhat lower content of free fatty acids than did control cheeses, possibly because of early conversion of acids to neutral compounds. Cheeses manufactured with S. durans showed a fluctuating, but consistent, free fatty acid content among treatments, with overall amounts being greater than in the control cheeses or in cheeses made with S. faecalis. Cheeses cured at 12.8 C showed greater free fatty acid liberation, but the effects of early cooling rates were not significant. Citric acid in cheeses made with S. faecalis and in control cheeses was utilized most rapidly in 30 days at 12.8 C and extending to 60 days when cured at 7.2 C, after which no more breakdown seemed to occur. Cheeses made with S. durans 9–20 followed approximately the same pattern although some utilization took place between 90 and 180 days. In cheeses made with S. durans 15–20, however, citric acid utilization was continuous up to 180 days, and in cheeses cured at 12.8 C, citric acid was nearly depleted at 180 days. Cheeses made with S. durans 15–20 and cured at 12.8 C exhibited excessive gas production.



Sign in / Sign up

Export Citation Format

Share Document