scholarly journals The Role of Natural Fractures in Shale Gas Production

Author(s):  
Ian Walton ◽  
John McLe
SPE Journal ◽  
2019 ◽  
Vol 24 (03) ◽  
pp. 1378-1394 ◽  
Author(s):  
Dhruvit S. Berawala ◽  
Pål Ø. Andersen ◽  
Jann R. Ursin (ret.)

Summary The purpose of this paper is to investigate the main controlling factors during a continuum-flow regime in shale-gas production in the context where well-induced fractures, extending from the well perforations, improve reservoir conductivity and performance. A mathematical 1D+1D model is presented that involves a high-permeability fracture extending from a well perforation through symmetrically surrounding shale matrix with low permeability. Gas in the matrix occurs in the form of adsorbed material attached to kerogen (modeled by a Langmuir isotherm) and as free gas in the nanopores. The pressure gradient toward the fracture and well perforation causes the free gas to flow. With pressure depletion, gas desorbs out of the kerogen into the pore space and then flows to the fracture. When the pressure has stabilized, desorption and production stop. The production of shale gas and mass distributions indicate the efficiency of species transfer between fracture and matrix. We show that the behavior can be scaled and described according to the magnitude of two characteristic dimensionless numbers: the ratio of diffusion time scales in shale and fracture, α, and the pore-volume (PV) ratio between the shale and fracture domains, β. Fracture/matrix properties are varied systematically to understand the role of fracture/matrix interaction during production. Further, the role of fracture geometry (varying width) is investigated. Input parameters from experimental and field data in the literature are applied. The product αβ expresses how much time it takes to diffuse the gas in place through the fracture to the well compared with the time it takes to diffuse that gas from the matrix to the fracture. For αβ≪1, the residence time in the fracture is of negligible importance, and fracture properties such as shape, width, and permeability can be ignored. However, if αβ≈1, the residence time in the fracture becomes important, and variations in all those properties have significant effects on the solution. The model allows for intuitive interpretation of the complex shale-gas-production system. Furthermore, the current model creates a base that can easily incorporate nonlinear-flow mechanisms and geomechanical effects that are not readily found in standard commercial software, and further be extended to field-scale application.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Alexei V. Milkov ◽  
Stefan Schwietzke ◽  
Grant Allen ◽  
Owen A. Sherwood ◽  
Giuseppe Etiope

Fuels ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 286-303
Author(s):  
Vuong Van Pham ◽  
Ebrahim Fathi ◽  
Fatemeh Belyadi

The success of machine learning (ML) techniques implemented in different industries heavily rely on operator expertise and domain knowledge, which is used in manually choosing an algorithm and setting up the specific algorithm parameters for a problem. Due to the manual nature of model selection and parameter tuning, it is impossible to quantify or evaluate the quality of this manual process, which in turn limits the ability to perform comparison studies between different algorithms. In this study, we propose a new hybrid approach for developing machine learning workflows to help automated algorithm selection and hyperparameter optimization. The proposed approach provides a robust, reproducible, and unbiased workflow that can be quantified and validated using different scoring metrics. We have used the most common workflows implemented in the application of artificial intelligence (AI) and ML in engineering problems including grid/random search, Bayesian search and optimization, genetic programming, and compared that with our new hybrid approach that includes the integration of Tree-based Pipeline Optimization Tool (TPOT) and Bayesian optimization. The performance of each workflow is quantified using different scoring metrics such as Pearson correlation (i.e., R2 correlation) and Mean Square Error (i.e., MSE). For this purpose, actual field data obtained from 1567 gas wells in Marcellus Shale, with 121 features from reservoir, drilling, completion, stimulation, and operation is tested using different proposed workflows. A proposed new hybrid workflow is then used to evaluate the type well used for evaluation of Marcellus shale gas production. In conclusion, our automated hybrid approach showed significant improvement in comparison to other proposed workflows using both scoring matrices. The new hybrid approach provides a practical tool that supports the automated model and hyperparameter selection, which is tested using real field data that can be implemented in solving different engineering problems using artificial intelligence and machine learning. The new hybrid model is tested in a real field and compared with conventional type wells developed by field engineers. It is found that the type well of the field is very close to P50 predictions of the field, which shows great success in the completion design of the field performed by field engineers. It also shows that the field average production could have been improved by 8% if shorter cluster spacing and higher proppant loading per cluster were used during the frac jobs.


2021 ◽  
pp. 1-18
Author(s):  
Yunzhao Zhang ◽  
Lianbo Zeng ◽  
Wenya Lyu ◽  
Dongsheng Sun ◽  
Shuangquan Chen ◽  
...  

Abstract The Upper Triassic Xujiahe Formation is a typical tight gas reservoir in which natural fractures determine the migration, accumulation and production capacity of tight gas. In this study, we focused on the influences of natural fractures on the tight gas migration and production. We clarified characteristics and attributes (i.e. dips, apertures, filling degree and cross-cutting relationships) of the fractures based on image logging interpretations and core descriptions. Previous studies of electron spin resonance, carbon and oxygen isotopes, homogenization temperature of fluid inclusions analysis and basin simulation were considered. This study also analysed the fracture sequences, source of fracture fillings, diagenetic sequences and tight gas enrichment stages. We obtained insight into the relationship between fracture evolution and hydrocarbon charging, particularly the effect of the apertures and intensity of natural fractures on tight gas production. We reveal that the bedding fractures are short horizontal migration channels of tight gas. The tectonic fractures with middle, high and nearly vertical angles are beneficial to tight gas vertical migration. The apertures of fractures are controlled by the direction of maximum principal stress and fracture angle. The initial gas production of the vertical wells presents a positive correlation with the fracture abundance, and the intensity and aperture of fractures are the fundamental factors that determine the tight gas production. With these findings, this study is expected to guide the future exploration and development of tight gas with similar geological backgrounds.


1991 ◽  
Vol 13 (3) ◽  
pp. 337-359 ◽  
Author(s):  
H. SCOTT LANE ◽  
DAVID E. LANCASTER ◽  
A. TED WATSON
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document