The Slow Drift Oscillations of a Moored Object in Random Seas

1972 ◽  
Vol 12 (03) ◽  
pp. 191-198 ◽  
Author(s):  
G.F.M. Remery ◽  
A.J. Hermans

Abstract The phenomenon of the slowly varying drifting force on a mowed object in a random sea is explained and illustrated from the results of several model tests with a rectangular barge. These tests, conducted at the Netherlands Ship Model Basin, were an extension of an object executed program. Using the results of measured or calculated drifting forces on an object moored in regular waves, a prediction can be Made of the drifting forces induced by wave trains consisting of regular wave groups. Also, for an irregular wave train the drifting force on the barge can be computed as a function of time, which makes it possible to calculate the surge motion of the barge. The results of tests and calculations show a reasonable agreement. Introduction In the last few years the problems concerning the mooring of objects in random seas have gained much attention as a result of the necessity to load and discharge big tankers in open sea, or because the sea bottom has to be explored and exploited by vessels operating from the water surface. Generally a floating object moored in waves will be subjected to forces causing horizontal and vertical motions and to moments causing angular motions about the horizontal and vertical axes. Here we will deal with the horizontal surge motion of a rectangular barge moored by means of linear springs in head waves. The surge motion can be split up into a mean excursion, a slowly varying motion, and a higher frequency oscillation around the slowly varying position. The period of the higher frequency oscillation is equal to that of the wave motion; and since a considerable amount of literature is available concerning this part of the motion, it will not be treated in this paper. From the results of model tests in regular waves the mean drifting force on the barge could be determined as a function of the wave frequency. Using these data, the long-periodical surge motion of the barge was calculated for different stiffnesses of the mooring system for the condition in which the barge was moored in a wave train consisting of regular wave groups. The results of these calculations are compared with model test results. From these and earlier executed tests it is clear that resonance phenomena may occur when the period with which the wave groups encounter the barge equals the natural period of the surge motion of the moored barge. period of the surge motion of the moored barge. It also appears to be possible to calculate the drifting force induced by regular wave groups when such a wave train is taken to consist of two regular waves with a small difference in frequency. The regular wave groups, used for a clear demonstration of certain long-periodical phenomena, have mainly educational value. Regular wave groups will seldom occur. Generally the wave height changes irregularly. To estimate the drifting forces exerted on an object in a particular irregular wave train as a function of time, a method exists which produces reasonable results. This method, based on the principle of known drifting force in regular waves, principle of known drifting force in regular waves, will be dealt with. Starting from the obtained drifting force, the surge motion of the object moored in this particular wave train can be calculated. This is illustrated by comparison of some calculated surge motion records with those of measured ones. THE DRIFTING FORCE IN REGULAR WAVES The hydrodynamic forces on an object floating in regular waves may be resolved in an oscillatory part and in a constant part, of which the latter is part and in a constant part, of which the latter is known as the steady drifting force. Maruo shows that, for the two-dimensional case of an infinitely long cylinder floating in regular waves with its axis perpendicular to the wave direction, the steady drifting force Fd per unit length satisfies: Fd = 1/2 pga . SPEJ P. 191

1976 ◽  
Vol 1 (15) ◽  
pp. 157
Author(s):  
Yvon Ouellet ◽  
Pierre Eubanks

This paper describes the results of an experimental study on the effect of waves on rubble-mound breakwaters, wave transmission subsequent to wave overtopping, the stability of the three sides subjected to wave action and the effect of the breakwaters on waves. Two different rubble-mound breakwaters were tested, i. e. one with a rigid impermeable crest and the other with a flexible permeable crest. Tests were performed with both regular and irregular wave train systems. To obtain the simulated irregular wave trains, four theoretical spectra were chosen: Neumann, Bretschneider, Moskowitz, and Scott. Results obtained from tests with irregular wave trains were compared to those obtained from tests with regular wave trains. It was found that more information was obtained on the behaviour of the structure when it was submitted to the attack of irregular waves than when submitted to regular waves, and that the use of irregular wave trains gave more interesting results.


Author(s):  
Anskey A. Miranda ◽  
Fred P. Turner ◽  
Nigel Barltrop

This paper presents a study of the analysis methodologies used to predict the most likely response of flexibles in a subsea environment, with the aim of determining an efficient and reliable prediction methodology. The most accurate method involves simulating multiple wave realisations of a real world sea state, i.e. irregular waves, and post-processing the results to determine the most probable maximum (MPM). Due to the computationally intensive nature of this approach, however, regular wave analysis is typically used to determine flexible response. This approach considers the maximum wave within a design storm at a desired period; the choice of periods may leave room for uncertainty in the conservatism of the approach. With proper screening, regular wave analysis can be a valid yet overly conservative approach resulting in over design and additional cost. However, if screened incorrectly, there is a possibility that the choice of periods could give results that are under conservative. In addition to regular wave analysis, the paper presents two alternative methodologies to determine the most likely response, with the focus on reducing the computational resources required. The first alternative is an ‘Irregular Wave Screen’ approach in which the wave train is screened at areas of interest for waves within a user defined threshold of the maximum wave height, in addition to other user defined parameters. Only waves within these parameters are simulated to determine responses. The second alternative is the ‘New Wave’ approach, which models the most probable wave elevation around the maximum wave crest. The calculated new wave is then placed at the desired location to determine responses. The responses of the Regular, Irregular Wave Screen and New Wave methodologies are compared with the Irregular MPM approach to determine their feasibility to predict the response of flexibles in a real world irregular sea state with lower computational requirements.


1984 ◽  
Vol 1 (19) ◽  
pp. 186
Author(s):  
Daniel L. Behnke ◽  
Frederic Raichlen

An extensive program of stability experiments in a highly detailed three-dimensional model has recently been completed to define a reconstruction technique for a damaged breakwater (Lillevang, Raichlen, Cox, and Behnke, 1984). Tests were conducted with both regular waves and irregular waves from various directions incident upon the breakwater. In comparison of the results of the regular wave tests to those of the irregular wave tests, a relation appeared to exist between breakwater damage and the accumulated energy to which the structure had been exposed. The energy delivered per wave is defined, as an approximation, as relating to the product of H2 and L, where H is the significant height of a train of irregular waves and L is the wave length at a selected depth, calculated according to small amplitude wave theory using a wave period corresponding to the peak energy of the spectrum. As applied in regular wave testing, H is the uniform wave height and L is that associated with the period of the simple wave train. The damage in the model due to regular waves and that caused by irregular waves has been related through the use of the cumulative wave energy contained in those waves which have an energy greater than a threshold value for the breakwater.


2015 ◽  
Author(s):  
Dong Jin Kim ◽  
Sun Young Kim

Seakeeping performance of a planing boat should be sufficiently considered and evaluated at the design stage for its safe running in rough seas. Model tests in seakeeping model basins are often performed to predict the performance of full-scale planing boats. But, there are many limitations of tank size and wave maker capacity, in particular, for fast small planing boats due to small scale ratio and high Froude numbers of their scale models. In this research, scale model tests are tried in various test conditions, and results are summarized and analyzed to predict a 3 ton-class fast small planing boats designed. In a long and narrow tank, towing tests for a bare hull model are performed with regular head waves and long crested irregular head waves. Motion RAOs are derived from irregular wave tests, and they are in good agreements with RAOs in regular waves. Next, model ships with one water-jet propulsion system are built, and free running model tests are performed in ocean basins. Wave conditions such as significant heights, modal periods, and directions are varied for the free running tests. Motion RMS values, and RAOs are obtained through statistical approaches. They are compared with the results in captive tests for the bare hull model, and are used to predict the full-scale boat performances.


Author(s):  
Zhimin Tan ◽  
Yucheng Hou ◽  
John Zhang ◽  
Terry Sheldrake

This paper presents the fatigue evaluation of a flexible riser subjected to bi-modal sea states, where the local wind and swell conditions act simultaneously, and is observed in many offshore regions including Brazil and West Africa. Due to the irregularity of the riser responses, the traditional, regular wave approach for assessing the fatigue damage of a flexible pipe cannot be applied without significant simplifications. A typical deviation would be to treat the combined swell and wind conditions at sea as two sets of separate cases. The regular wave approach can then be applied and the summation of the damage of both cases defined as the final damage of the pipe. As an alternative, this paper presents a more theoretically accurate irregular wave approach. The entire irregular wave simulation was first performed using the commercial software, OrcaFlex™, together with a tensile wire stress model developed in-house. The model implements the pipe bending hysteresis behavior during dynamic excitation, producing corresponding time history stress results, which are used to assess the fatigue damage using a rain-flow counting method. Two case studies are presented, the first being a dynamic simulation performed with two wave trains generated based respectively on the given swell and wind sea spectrums. In the second case study, a single wave train is generated based on the combined spectrum of the swell and wind sea states. Both results are compared with those obtained by the traditional regular wave approach and a preferred analysis method is recommended based on the conservatism and time efficiency.


Author(s):  
Matteo Diez ◽  
Riccardo Broglia ◽  
Danilo Durante ◽  
Angelo Olivieri ◽  
Emilio F. Campana ◽  
...  

The objective of this work is to provide and use both experimental fluid dynamics (EFD) data and computational fluid dynamics (CFD) results to validate a regular-wave uncertainty quantification (UQ) model of ship response in irregular waves, based on a set of stochastic regular waves with variable frequency. As a secondary objective, preliminary statistical studies are required to assess EFD and CFD irregular wave errors and uncertainties versus theoretical values and evaluate EFD and CFD resistance and motions uncertainties and, in the latter case, errors versus EFD values. UQ methods include analysis of the autocovariance matrix and block-bootstrap of time series values (primary variable). Additionally, the height (secondary variable) associated with the mean-crossing period is assessed by the bootstrap method. Errors and confidence intervals of statistical estimators are used to define validation criteria. The application is a two-degrees-of-freedom (heave and pitch) towed Delft catamaran with a length between perpendiculars equal to 3 m (scale factor equal to 33), sailing at Froude number equal to 0.425 in head waves at scaled sea state 5. Validation variables are x-force, heave and pitch motions, vertical acceleration of bridge, and vertical velocity of flight deck. Autocovariance and block-bootstrap methods for primary variables provide consistent and complementary results; the autocovariance is used to assess the uncertainty associated with expected values and standard deviations and is able to identify undesired self-repetition in the irregular wave signal; block-bootstrap methods are used to assess additional statistical estimators such as mode and quantiles. Secondary variables are used for an additional assessment of the quality of experimental and simulation data as they are generally more difficult to model and predict than primary variables. Finally, the regular wave UQ model provides a good approximation of the desired irregular wave statistics, with average errors smaller than 5% and validation uncertainties close to 10%.


Author(s):  
Guttorm Grytoyr ◽  
Anne Marthine Rustad ◽  
Nils Sodahl ◽  
Per Christian Bunaes

The term ‘riser recoil’ refers to the situation when the lower end of a top tensioned riser is released, and the riser is lifted up by the riser tensioner and/or top motion compensator system on the supporting vessel. The elastic energy stored in the riser is then released, and the riser ‘recoils’. This paper focuses on the case of planned disconnect. Recoil of Marine Drilling Risers has been the subject of several research papers over the past two decades. Some examples are listed in references [2] through [7]. Completion and Work Over (CWO) risers are unique in the sense that they may be simultaneously connected to both the riser tensioner system and the top motion compensator system of a drilling vessel. A Marine Drilling riser, on the other hand, is only connected to the riser tensioner system. Typically the riser tensioner system has a stroke of ± 8–9 m, whereas the top motion compensator system has only ± 3.5–4 m. It is imperative that the connector is lifted clear of the subsea structure in order to avoid damage to the equipment after the riser has been disconnected. The operating window for planned disconnect of CWO risers is severely limited by the available stroke of the top motion compensator. One of the purposes of the disconnect analysis is to establish the maximum wave height at which there is still sufficient clearance between the connector and the subsea structure after disconnect. Previous experience has shown that this may be the governing limitation for workover operations. The current industry practice is to use a regular wave approach in the analysis. The wave frequency is varied in order to find the maximum response, and hence one is actually searching for the extreme response, without paying attention to the probability that this will occur. In this paper a new method is presented, where the analysis is based on an irregular wave approach and the Monte Carlo technique, using time-domain simulations. Acceptance criteria are established based on a stochastic analysis, and are based on target levels of probability of exceedance. The results are documented through a case study of a typical CWO riser system connected to a semi-submersible in typical North Sea environmental conditions. The semi-submersible and the CWO riser system are exposed to both regular and irregular waves. Comparison of the resulting allowable wave height indicates that using the approach presented here with irregular waves will give a considerable increase in the operating window, and the resulting operability, compared to a regular wave analysis.


Author(s):  
Decao Yin ◽  
Halvor Lie ◽  
Massimiliano Russo ◽  
Guttorm Grytøyr

Marine drilling riser is subject to complicated environmental loads which include top motions due to Mobile Offshore Drilling Unit (MODU), wave loads and current loads. Cyclic dynamic loads will cause severe fatigue accumulation along the drilling riser system, especially at the subsea well head (WH). Statoil and BP have carried out a comprehensive model test program on drilling riser in MARINTEK’s Towing Tank in February 2015. The objective is to validate and verify software predictions of drilling riser behaviour under various environmental conditions by use of model test data. Six drilling riser configurations were tested, including different components such as Upper Flex Joint (UFJ), tensioner, marine riser, Lower Marine Riser Package (LMRP), Blow-Out Preventer (BOP), Lower Flex Joint (LFJ), buoyancy elements and seabed boundary model. The drilling riser models were tested in different load conditions: 1. Forced top motion tests 2. Regular wave test 3. Combined regular wave and towing test 4. Irregular wave test 5. Combined irregular wave and towing test 6. Towing test (VIV) Measurements were made of micro bending strains and accelerations along the riser in both In-Line (IL) and Cross-Flow (CF) directions. Video recordings were made both above and under water. In this paper, the test set-up and test program are presented. Comparisons of results between model test and RIFLEX simulation are presented on selected cases. Preliminary results show that the drilling riser model tests are able to capture the typical dynamic responses observed from field measurement, and the comparison between model test and RIFLEX simulation is promising.


Sign in / Sign up

Export Citation Format

Share Document