Determining the Parameters of the Forchheimer Equation From Pressure-Squared vs. Pseudopressure Formulations

1998 ◽  
Vol 1 (01) ◽  
pp. 43-46 ◽  
Author(s):  
Faruk Civan ◽  
R.D. Evans

Summary This paper presents a comparison of the accuracy of the pressure-squared and pseudo pressure formulations of the Forchheimer equation for simultaneous determination of the permeability and non-Darcy flow coefficient from high-velocity flow tests using core plugs. We show that the pressure-squared formulation must satisfy two contradictory conditions. The core length should be sufficiently small so that the average viscosity and real gas deviation factor, which are dependent on the pressure drop, approach the actual values. The core length, however, should be long enough to be representative of the characteristic length of the porous media. Because these two conditions cannot be met simultaneously, the pressure-squared formulation is less accurate. We show that these effects are more pronounced for tight formations because of higher pressure drop across the core. The pseudo pressure formulation requires only that the core length should approach the representative core length, and, therefore, it provides more accurate interpretation of the high-velocity core flow tests and generates accurate values of the permeability and non-Darcy flow coefficient and the representative core length. Introduction Previous studies, including Firoozabadi et al.,1 have facilitated the integral forms of the Forchheimer2 equation as a convenient means of determining the permeability, k, and non-Darcy flow coefficient, ß, from high-velocity flow data. However, as Civan3 and Civan and Evans4 state, the core length averaged k and ß are functions of length, because the viscosity, µ, and the real gas deviation factor, z, are averaged over the pressure drop across the core ends to obtain µ and z, respectively. In theory, the pressure-squared function that many used, including Firoozabadi et al.,1 has inherent limitations because it must satisfy two contradictory conditions to obtain accurate estimation of permeability and inertial flow coefficient from laboratory core tests. The first condition requires very short cores for average viscosity and real gas deviation factor to be close to actual values. The second conditions requires sufficiently long cores to approximate the representative core length correctly. Mathematically, Eqs. 1 and 2 can express these conditions, respectively: where LR is a representative elemental core length. The pseudo pressure formulation by Civan and Evans4 involve only µ, which is almost constant for practical purposes because the effect of pressure on the gas viscosity is negligible. Therefore, the pseudo pressure formulation alleviates the need for satisfying both of these contrasting conditions. Thus, only the condition stated by Eq. 1 needs to be satisfied. Therefore, in the pseudo pressure formulation, the limit is taken with respect to the representative length only. Civan and Evans4,5 present the details of the formulations and the method that forms the basis for this paper elsewhere. We present the application and the verification of the method in this paper. This paper presents a comparison of the pressure-squared and pseudo pressure formulations, a demonstration of the effect of the core length, and determination of the representative core length for simultaneous measurement of permeability and non-Darcy flow coefficient. Applications and Discussion We checked the values of the inertial flow coefficients determined by Firoozabadi et al.1 against those predicted by the Liu et al.6 correlation given by in which ß is in ft–1, k is in md, and t is the tortuosity. Because Firoozabadi et al.1 do not report any values, the tortuosity of the sandstone was approximated as 2 following Carman.7 As Table 1 shows, the Liu et al.6 correlation can predict the inertial flow coefficients with two significant digits. This is within the accuracy of the pressure-squared function (i.e., Eq. 2 of Firoozabadi et al.1). We used existing in-house data (Evans and Civan8) to demonstrate the effect of the core length on permeability and non-Darcy flow coefficients. A series of different length berea cores have been used to generate the pressure differential vs. flow rate experimental data at steady-state conditions. We then plotted these data for each different core length, and Table 2 shows the determined permeability and the non-Darcy flow coefficient values, which we then plotted against core length to determine the sensitivity owing to the core length. The results that Fig. 1 gives indicate that the core-length average permeability and the non-Darcy flow coefficient are dependent on the core length. We obtained the representative values of permeability and the non-Darcy flow coefficient by extrapolation of the core-length average values to the representative elemental core length for which these values reach the limiting values given, respectively, as As can be seen, the representative elemental core length necessary for accurate measurements is simultaneously estimated to about 10 cm. One should be cautioned, however, that the extrapolated values obtained in this example represent the average k and ß values for the whole porous material, not the local values of k and ß at a selected location along the core. Note that the errors caused by not using representative core lengths are not negligible. If, for example, a core of 2.54 cm length instead of the representative length of 10 cm had been used, there would have been an error of ×100=21% in the ß value and ×100=-15% in the k value according to the data presented in Fig. 1.

1999 ◽  
Vol 2 (03) ◽  
pp. 296-302 ◽  
Author(s):  
Ganesh Narayanaswamy ◽  
Mukul M. Sharma ◽  
G.A. Pope

Summary An analytical method for calculating an effective non-Darcy flow coefficient for a heterogeneous formation is presented. The method presented here can be used to calculate an effective non-Darcy flow coefficient for heterogeneous gridblocks in reservoir simulators. Based on this method, it is shown that the non-Darcy flow coefficient of a heterogeneous formation is larger than the non-Darcy flow coefficient of an equivalent homogenous formation. Non-Darcy flow coefficients calculated from gas well data show that non-Darcy flow coefficients obtained from well tests are significantly larger than those predicted from experimental correlations. Permeability heterogeneity is a very likely reason for the differences in non-Darcy flow coefficients often seen between laboratory and field data. Introduction In this paper, we present an analytical method for calculating an effective non-Darcy flow coefficient for a heterogeneous reservoir. The effect of heterogeneity on the non-Darcy flow coefficient is also shown using numerical simulations. Non-Darcy flow coefficients calculated from the analysis of welltest data from a gas condensate field are compared with experimental correlations. Such a comparison allows us to more accurately assess the importance of non-Darcy flow in gas condensate reservoirs. Literature Review As early as 1901, Reynolds observed, in his classical experiments of injecting dye into water flowing through glass tubes, that after some high flowrate, flow rate was no longer proportional to the pressure drop. Forchheimer1 also observed this phenomena and proposed the following quadratic equation to express the relationship between pressure drop and velocity in a porous medium: d P d r = μ k u + β ρ u 2 . ( 1 ) This equation has come to be known asForchheimer's equation. At low Reynolds number (creeping flow conditions), the above equation reduces to Darcy's law. Tek2 developed a generalized Darcy equation in dimensionless form which predicts the pressure drop with good agreement over all ranges of Reynolds numbers. Katz et al.3 attributed the phenomenon of non-Darcy flow to turbulence. Tek et al.4 proposed the following correlation for?: β = 5.5 × 10 9 k 5 / 4 ϕ 3 / 4 . ( 2 ) Gewers and Nichol5 conducted experiments on microvugular carbonate cores to measure the non-Darcy flow coefficient. They also studied the effect of the presence of a second static fluid phase and the effect on plugging due to fines migration. They found that ? decreases and then increases with liquid saturation. Wong6 studied the effect of a mobile liquid saturation on ?. He used distilled water as the liquid phase and water saturated nitrogen as the gas phase on the same cores used by Gewers and Nichol. He plotted ? vs liquid saturation and found that there is an eight-fold increase in ? when the liquid saturation increases from 40% to 70%. He concluded that ? can be approximately calculated from the dry core experiments by using the effective gas permeability. Geertsma7,8 introduced an empirical relationship between ?,k and ? based on a combination of experimental data and dimensional analysis. He noted that the observed departure from Darcy's law was due to the convective acceleration and deceleration of the fluid particles. He also defined a new Reynolds number as ?k??/?, and suggested the following correlation for ? with a constant C (k is in ft 2, ?is in 1/ft). β = C k 0.5 ϕ 5.5 . ( 3 ) For the case of gas flowing through a core with a static liquid phase, he suggested the following correlation: β = C ( k k r g ) 0.5 [ ϕ ( 1 − S w ) ] 5.5 . ( 4 ) Phipps and Khalil9 proposed a method for determining the exponent in a Forchheimer-type equation. Firoozabadi and Katz10 presented are view of the theory of high velocity gas flow through porous media. Evanset al.11 reviewed the various correlations. They conducted an experimental study of the effect of the immobile liquid saturation and suggested a correlation based on dimensional analysis. Nguyen12performed an experimental study of non-Darcy flow through perforations on a synthetic core using air. These experiments showed that non-Darcy flow exists in the convergence zone and the perforation tunnel. Results of this study showed that Darcy flow equations can over predict well productivity by as much as 100%. Jones13 conducted experiments on 355 sandstone and 29 limestone cores. These tests were done for various core types: vuggy limestones, crystalline limestones, and fine grained sandstones. He presented the following correlation: β = 6.15 × 10 10 k − 1.55 . ( 5 ) He also points out that the group ?k? which is the characteristic length used for defining a Reynolds number for porous media, should be proportional to the characteristic length k/ϕ. He developed an approximate multilayer flow model that demonstrates that the departure from the above relation is due to permeability variations. Jones suggested that heterogeneity may be the reason why all correlations involving ? exhibit so much scatter.


Author(s):  
Enzo Giacomelli ◽  
Massimo Schiavone ◽  
Fabio Manfrone ◽  
Andrea Raggi

Poppet valves have been used for a long time for very high pressure reciprocating compressors, as for example in the case of Low Density Polyethylene. These applications are very critical because the final pressure can reach 350 MPa and the evaluation of the performance of the machines is strongly connected to the proper operation and performance of the valve itself. The arrangement of cylinders requires generally a certain compactness of valve to withstand high fatigue stresses, but at the same time pressure drop and operating life are very important. In recent years the reliability of the machines has been improving over and over and the customers’ needs are very stringent. Therefore the use of poppet valves has been extended to other cases. In general the mentioned applications are heavy duty services and the simulation of the valves require some coefficients to be used in the differential equations, able to describe the movement of plate/disk or poppet and the flow and related pressure drop through the valves. Such coefficients are often determined in an experimental way in order to have a simulation closer to the real operating conditions. For the flow coefficients it is also possible today to use theoretical programs capable of determining the needed values in a quick and economical way. Some investigations have been carried out to determine the values for certain geometries of poppet valves. The results of the theory have been compared with some experimental tests. The good agreement between the various methods indicates the most suitable procedure to be applied in order to have reliable data. The advantage is evident as the time necessary for the theoretical procedure is faster and less expensive. This is of significant importance at the time of the design and also in case of a need to provide timely technical support for the operating behavior of the valves. Particularly for LDPE, the optimization of all the parameters is strongly necessary. The fatigue stresses of cylinder heads and valve bodies have to match in fact with gas passage turbulence and pressure drop, added to the mechanical behavior of the poppet valve components.


SPE Journal ◽  
2018 ◽  
Vol 24 (01) ◽  
pp. 71-91 ◽  
Author(s):  
Salam Al-Rbeawi

Summary The objective of this paper is to revisit currently used techniques for analyzing reservoir performance and characterizing the horizontal-well productivity index (PI) in finite-acting oil and gas reservoirs. This paper introduces a new practical and integrated approach for determining the starting time of pseudosteady-state flow and constant-behavior PI. The new approach focuses on the fact that the derivative of PI vanishes to zero when pseudosteady-state flow is developed. At this point, the derivative of transient-state pressure drop and that of pseudosteady-state pressure drop become mathematically identical. This point indicates the starting time of pseudosteady-state flow as well as the constant value of pseudosteady-state PI. The reservoirs of interest in this study are homogeneous and heterogamous, single and dual porous media, undergoing Darcy and non-Darcy flow in the drainage area, and finite-acting, depleted by horizontal wells. The flow in these reservoirs is either single-phase oil flow or single-phase gas flow. Several analytical models are used in this study for describing pressure and pressure-derivative behavior considering different reservoir configurations and wellbore types. These models are developed for heterogeneous and homogeneous formations consisting of single and dual porous media (naturally fractured reservoirs) and experiencing Darcy and non-Darcy flow. Two pressure terms are assembled in these models; the first pressure term represents the time-dependent pressure drop caused by transient-state flow, and the second pressure term represents time-invariant pressure drop controlled by the reservoir boundary. Transient-state PI and pseudosteady-state PI are calculated using the difference between these two pressures assuming constant wellbore flow rate. The analytical models for the pressure derivatives of these two pressure terms are generated. Using the concept that the derivative of constant PI converges to zero, these two pressure derivatives become mathematically equal at a certain production time. This point indicates the starting time of pseudosteady-state flow and the constant behavior of PI. The outcomes of this study are summarized as the following: Understanding pressure, pressure derivative, and PI behavior of bounded reservoirs drained by horizontal wells during transient- and pseudosteady-state production Investigating the effects of different reservoir configurations, wellbore lengths, reservoir homogeneity or heterogeneity, reservoirs as single or dual porous media, and flow pattern in porous media whether it has undergone Darcy or non-Darcy flow Applying the concept of the PI derivative to determine the starting time of pseudosteady-state stabilized PI The novel points in this study are the following: The derivative of the PI can be used to precisely indicate the starting time of pseudosteady-state flow and the constant behavior of PI. The starting time of pseudosteady-state flow determined by the convergence of transient- and pseudosteady-state pressure derivative or by the PI curve is always less than that determined from the curves of total pressure drop and its derivative. Non-Darcy flow may significantly affect the transient-state PI, but pseudosteady-state PI is slightly affected by non-Darcy flow. The starting time of pseudosteady-state flow is not influenced by non-Darcy flow. The convergence of transient- and pseudosteady-state pressure derivatives is affected by reservoir configurations, wellbore lengths, and porous-media characteristics.


2019 ◽  
Vol 5 (1) ◽  
pp. 75-80
Author(s):  
Vyacheslav S. Kuzevanov ◽  
Sergey K. Podgorny

The need to shape reactor cores in terms of coolant flow distributions arises due to the requirements for temperature fields in the core elements (Safety guide No. NS-G-1.12. 2005, IAEA nuclear energy series No. NP-T-2.9. 2014, Specific safety requirements No. SSR-2/1 (Rev.1) 2014). However, any reactor core shaping inevitably leads to an increase in the core pressure drop and power consumption to ensure the primary coolant circulation. This naturally makes it necessary to select a shaping principle (condition) and install heat exchange intensifiers to meet the safety requirements at the lowest power consumption for the coolant pumping. The result of shaping a nuclear reactor core with identical cooling channels can be predicted at a quality level without detailed calculations. Therefore, it is not normally difficult to select a shaping principle in this case, and detailed calculations are required only where local heat exchange intensifiers are installed. The situation is different if a core has cooling channels of different geometries. In this case, it will be unavoidable to make a detailed calculation of the effects of shaping and heat transfer intensifiers on changes in temperature fields. The aim of this paper is to determine changes in the maximum wall temperatures in cooling channels of high-temperature gas-cooled reactors using the combined effects of shaped coolant mass flows and heat exchange intensifiers installed into the channels. Various shaping conditions have been considered. The authors present the calculated dependences and the procedure for determining the thermal coolant parameters and maximum temperatures of heat exchange surface walls in a system of parallel cooling channels. Variant calculations of the GT-MHR core (NRC project No. 716 2002, Vasyaev et al. 2001, Neylan et al. 1994) with cooling channels of different diameters were carried out. Distributions of coolant flows and temperatures in cooling channels under various shaping conditions were determined using local resistances and heat exchange intensifiers. Preferred options were identified that provide the lowest maximum wall temperature of the most heat-stressed channel at the lowest core pressure drop. The calculation procedure was verified by direct comparison of the results calculated by the proposed algorithm with the CFD simulation results (ANSYS Fluent User’s Guide 2016, ANSYS Fluent. Customization Manual 2016, ANSYS Fluent. Theory Guide 2016, Shaw1992, Anderson et al. 2009, Petrila and Trif 2005, Mohammadi and Pironneau 1994).


Author(s):  
Antonio C. Bannwart ◽  
Oscar M. H. Rodriguez ◽  
Jorge L. Biazussi ◽  
Fabio N. Martins ◽  
Marcelo F. Selli ◽  
...  

The use of the core-annular flow pattern, where a thin fluid surrounds a very viscous one, has been suggested as an attractive artificial-lift method for heavy oils in the current Brazilian ultra-deepwater production scenario. This paper reports the pressure drop measurements and the core-annular flow observed in a 2 7/8-inch and 300 meter deep pilot-scale well conveying a mixture of heavy crude oil (2000 mPa.s and 950 kg/m3 at 35 C) and water at several combinations of the individual flow rates. The two-phase pressure drop data are compared with those of single-phase oil flow to assess the gains due to water injection. Another issue is the handling of the core-annular flow once it has been established. High-frequency pressure-gradient signals were collected and a treatment based on the Gabor transform together with neural networks is proposed as a promising solution for monitoring and control. The preliminary results are encouraging. The pilot-scale tests, including long-term experiments, were conducted in order to investigate the applicability of using water to transport heavy oils in actual wells. It represents an important step towards the full scale application of the proposed artificial-lift technology. The registered improvements in terms of oil production rate and pressure drop reductions are remarkable.


1980 ◽  
Vol 87 ◽  
pp. 33-38
Author(s):  
Nicholas Z. Scoville

Observations at both millimeter and infrared wavelengths reveal energetic activity within the core of the Orion molecular cloud in the vicinity of the KL-BN cluster. New observations of the high velocity CO emission at 2.6-mm with improved angular resolution (HPBW = 44″) show that the source diameter averages 4 × 1017 cm and the center of mass is displaced 10-12″ north of the Kleinmann-Low nebula to a position close to the Becklin-Neugebauer object. The total mass of high velocity gas in the core region is ∼10 M⊙ (assuming 10% of the carbon is in CO); the present kinetic energy is 4 × 1047 ergs. Further evidence that BN may be the ultimate source of this energy is provided by high resolution infrared spectra which show both ionized and high temperature (Tk ≳ 3000 K) neutral gas in this source. CO bandhead emission (v = 2 → 0, 3 → 1, and 4 → 2) seen in BN is thought to arise from collisional excitation at high temperatures in a very dense (nH > 1010 cm−3) region only 1 AU in size. And high spectral resolution profiles of the Br α and γ recombination lines show that the HII region previously detected in BN apparently has motions over 100 km s−1.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Nabil Kharoua ◽  
Lyes Khezzar ◽  
Zoubir Nemouchi

A particle-laden flow inside solid gas cyclones has been studied using computational fluid dynamics (CFD). The effects of high temperatures and different particle loadings have been investigated. The Reynolds stress (RSM) model-predicted results, in the case of pure gas, are within engineering accuracy even at high temperatures. Using the granular mixture model for the cases of particle-laden flow, discrepancies occurred at relatively high loadings (up to 0.5 kg/m3). Since the pressure drop is strongly related to the friction inside the cyclone body, the concept of entropy generation has been employed to detect regions of high frictional effects. Friction has been observed to be important at the vortex finder wall, the bottom of the conical-part wall, and the interface separating the outer and the core streams. The discrepancies between the present numerical simulation and the experimental results taken from the existing literature, which are caused by the mixture and turbulence models simplifying assumptions, are discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document