Effect of Chromatographic Transport in Hexylamine on Displacement of Oil by Water in Porous Media

1964 ◽  
Vol 4 (03) ◽  
pp. 231-239 ◽  
Author(s):  
A.S. Michaels ◽  
Arnold Stancell ◽  
M.C. Porter

MICHAELS, A.S., MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASS. MEMBER AIME STANCELL, ARNOLD, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASS. PORTER, M.C., MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASS. Abstract Previous laboratory studies have demonstrated that the injection of small quantities of reverse wetting agents during water displacement can increase oil recovery from unconsolidated porous media. In the present investigation, an attempt has been made to determine more fully the effects of reverse wetting treatments and to clarify the mechanism by which increased oil recovery is effected Water-oil displacements were performed in beds of 140–200 mesh silica sand. Hexylamine slugs (injected after 0.25 pore volume of water through put), when adequate in size and concentration, were effective in promoting additional oil recovery. Their effectiveness increased with the quantity of amine injected. However, slugs of sufficient size and concentration to stimulate oil production at water flow rates of 34 ft/day did not do so at 4 ft/day.Visual studies in a glass grid micromodel have shown that the stimulation of oil production, via aqueous bexylamine, is a result of transient changes in the oil wettability of the pore walls. If the am in e slug is of sufficient size and concentration to induce significant changes in the adhesion-tension, large continuous oil masses will be formed. If the superficial water velocity is high enough to result in rapid desorption of the am in e, a favorable "wettability gradient" may be established across the masses; under such conditions, high oil mobility is observed, and increased oil recovery results. Introduction It is generally agreed that the efficiency of oil displacement by water in porous media is limited in part by capillary forces which cause the retention of isolated masses of oil - resulting in the so-called "irreducible minimum oil saturation". Recent estimates indicate that there are about 220 billion bbl of petroleum in United States reservoirs which are not economically recoverable with present techniques (such as water flooding). This amounts to almost five times the known recoverable reserves. It has been recognized for some time that a suitable alteration in the water-oil interfacial tension and/or the contact angle, as measured between the water-oil interface and the solid surface, should result in better displacement efficiency. Surface active agents can be used as interfacial tension depressants to accomplish this objective, but unfortunately, the additional oil recovery is seldom commensurate with the treatment cost.In contrast to interfacial tension depressants, the effect of contact angle alterations on water- oil displacements has received relatively little attention in the literature. It is known that the wettability affects the displacement process. Displacements in water-wet systems generally result in lower residual oil saturations than those in oil-wet systems. The effect of "transient" wettability alterations concurrent with the displacement process have been investigated by Wagner, Leach and coworkers, wherein it has been demonstrated that the establishment of water- wet conditions during water flooding of oil-wet, oil-saturated porous media is accompanied by significant increase in oil displacement efficiency. Michaels and Timmins studied the effects of transient contact angle alterations resulting from chromatographic transport of reverse wetting agents through unconsolidated sand. It was demonstrated that chromatographic transport of short-chain (C4 through C8) primary aliphatic amines can improve oil recovery and that the recovery increases with the quantity of amine injected (i.e., with either the amine concentration or the volume of the slug injected). Circumstantial evidence indicated that the increased displacement efficiency resulted primarily from transient changes in wettability of the porous medium.In the present investigation, additional information has been obtained on the effects of reverse wetting treatments and the mechanism by which increased oil recovery is accomplished. SPEJ P. 231^

1966 ◽  
Vol 6 (04) ◽  
pp. 335-344 ◽  
Author(s):  
O.R. Wagner ◽  
R.O. Leach

Abstract Immiscible displacement tests were performed in a consolidated sandstone core over the interfacial tension range from less than 0.01 to 5 dynes/cm to better define how interfacial tension (IFT) reduction can lead to increased oil recovery. Data obtained were displacement efficiency at breakthrough vs IFT for both drainage and imbibition conditions. These tests simulate water flooding under oil-wet and water-wet conditions, respectively. Results of the study have shown that displacement efficiency under both oil-wet and water-wet conditions can be markedly improved by a sufficient reduction in IFT. In the particular porous media used and for the low pressure gradients employed, the IFT must be reduced to a value less than about 0.07 dynes/cm to achieve increased recovery at the time of breakthrough of the injected phase. Below 0.07 dynes/cm, further small reductions in IFT result in large increases in displacement efficiency. Observed increases in recovery were obtained at pressure gradients which are well below those which can exist in the interwell area of a reservoir under water flood. The effect of pressure gradient on recovery is discussed. INTRODUCTION A residual oil saturation remains in rock which has been water flooded because, under usual reservoir conditions, the driving force which can be generated is inadequate to expel oil trapped by capillary forces. Since these capillary forces can be reduced by reducing the IFT a frequently studied method 1-5 of increasing oil recovery has been the use of surfactants to reduce the water-oil interfacial tension. Mungan1 observed improved recovery in both water-wet and oil-wet systems at 1.1 dyne/cm IFT, finding that the amount of improvement was greater in oil-wet systems. Moore and Blum,2 working with visual flow cell micro-models, concluded that recovery cannot be improved in water-wet systems by injecting surfactant solutions. They calculated that, for a pressure gradient of 1 psi/ft in their model, the IFT must be reduced to 0.03 dynes/cm to release oil trapped under water-wet conditions. Berkeley et al.3 indicated that, at representative field flooding rates, the IFT must be reduced to 0.001 dyne/cm to improve recovery. Thus, there is a wide variation of opinion about the IFT levels needed to improve recovery under field conditions. These previous investigators all have used as their experimental method the addition of surfactants to the injected water. The use of surfactant solutions to reduce IFT creates two experimental problems:the loss of surfactant through adsorption on reservoir rock can obscure the true IFT value which exists at the displacement front, andat very low values of IFT emulsification of oil and water commonly occurs. It is difficult, therefore, to determine whether the increased recovery is caused by IFT reduction as such, or is instead caused by emulsification. Also the properties of the available surfactants limit the IFT range which can be studied. In the present study the purpose is to better define how interfacial tension reduction can lead to increased oil recovery. A matter of great interest is the amount of recovery improvement potentially achievable in this way. The study was made using very low pressure gradients which was well within the range achievable by water flooding in the interwell region of petroleum reservoirs. A unique experimental approach was chosen to avoid adsorption and emulsification problems, and to allow convenient control of IFT. The fluid phases used were the equilibrium vapor and liquid phases of the methane-n-pentane system. The interfacial tension level was varied by changing the equilibrium pressure of the methane-pentane system over the range from 1,200 psia to near the critical pressure (2,420 psia). All tests were performed at a controlled temperature of 100F. The IFT-vs-pressure relationship for the methane-pentane system was based on the data of Stegemeier and Hough,6 and on new data obtained in this study. With this experimental approach it has been possible to study displacement at lower values of IFT than have been previously investigated.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1296 ◽  
Author(s):  
Reidun C. Aadland ◽  
Salem Akarri ◽  
Ellinor B. Heggset ◽  
Kristin Syverud ◽  
Ole Torsæter

Cellulose nanocrystals (CNCs) and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibrils (T-CNFs) were tested as enhanced oil recovery (EOR) agents through core floods and microfluidic experiments. Both particles were mixed with low salinity water (LSW). The core floods were grouped into three parts based on the research objectives. In Part 1, secondary core flood using CNCs was compared to regular water flooding at fixed conditions, by reusing the same core plug to maintain the same pore structure. CNCs produced 5.8% of original oil in place (OOIP) more oil than LSW. For Part 2, the effect of injection scheme, temperature, and rock wettability was investigated using CNCs. The same trend was observed for the secondary floods, with CNCs performing better than their parallel experiment using LSW. Furthermore, the particles seemed to perform better under mixed-wet conditions. Additional oil (2.9–15.7% of OOIP) was produced when CNCs were injected as a tertiary EOR agent, with more incremental oil produced at high temperature. In the final part, the effect of particle type was studied. T-CNFs produced significantly more oil compared to CNCs. However, the injection of T-CNF particles resulted in a steep increase in pressure, which never stabilized. Furthermore, a filter cake was observed at the core face after the experiment was completed. Microfluidic experiments showed that both T-CNF and CNC nanofluids led to a better sweep efficiency compared to low salinity water flooding. T-CNF particles showed the ability to enhance the oil recovery by breaking up events and reducing the trapping efficiency of the porous medium. A higher flow rate resulted in lower oil recovery factors and higher remaining oil connectivity. Contact angle and interfacial tension measurements were conducted to understand the oil recovery mechanisms. CNCs altered the interfacial tension the most, while T-CNFs had the largest effect on the contact angle. However, the changes were not significant enough for them to be considered primary EOR mechanisms.


2019 ◽  
Vol 10 (4) ◽  
pp. 1551-1563 ◽  
Author(s):  
Siamak Najimi ◽  
Iman Nowrouzi ◽  
Abbas Khaksar Manshad ◽  
Amir H. Mohammadi

Abstract Surfactants are used in the process of chemical water injection to reduce interfacial tension of water and oil and consequently decrease the capillary pressure in the reservoir. However, other mechanisms such as altering the wettability of the reservoir rock, creating foam and forming a stable emulsion are also other mechanisms of the surfactants flooding. In this study, the effects of three commercially available surfactants, namely AN-120, NX-1510 and TR-880, in different concentrations on interfacial tension of water and oil, the wettability of the reservoir rock and, ultimately, the increase in oil recovery based on pendant drop experiments, contact angle and carbonate core flooding have been investigated. The effects of concentration, temperature, pressure and salinity on the performances of these surfactants have also been shown. The results, in addition to confirming the capability of the surfactants to reduce interfacial tension and altering the wettability to hydrophilicity, show that the TR-880 has the better ability to reduce interfacial tension than AN-120 and NX-1510, and in the alteration of wettability the smallest contact angle was obtained by dissolving 1000 ppm of surfactant NX-1510. Also, the results of interfacial tension tests confirm the better performances of these surfactants in formation salinity and high salinity. Additionally, a total of 72% recovery was achieved with a secondary saline water flooding and flooding with a 1000 ppm of TR-880 surfactant.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Bin Huang ◽  
Tingge Dai ◽  
Hongjuan Liu ◽  
Cheng Fu ◽  
Tingting Zhu ◽  
...  

Emulsions play an important role in enhancing oil recovery during the reservoir flooding process. In order to reveal the profile control ability and the effect of adjustments to the interlayer interference during the migration of the emulsion in the porous media, a stable emulsion system and an alkali-surfactant-polymer (ASP) system were selected to simulate the underground emulsification process by verifying influencing factors of the emulsion. A parallel-core displacement experiment was used to investigate the oil displacement efficiency and the difference of fractional flow in each layer under different emulsification degrees and different permeability contrasts. The results indicate that the stability of the emulsion is related to the shearing strength, the water content, and the type and concentration of chemical system. The oil displacement efficiency of emulsion flooding is better than that of ASP flooding. For parallel core with an average permeability of 40 mD and a permeability contrast of 2, the emulsion flooding can enhance oil recovery by 21.16% compared to water flooding. With increasing permeability contrast, the oil recovery percent of emulsion flooding will further increase. The emulsion system has good profile control ability. Within a certain range, the stronger the heterogeneity of porous media, the better the effect of emulsification on the adjustment of the interlayer interference.


Author(s):  
GERARDO REYES GUZMÁN

Rudiger Dornbusch, destacado economista del Massachusetts Institute of Technology (MIT), analiza en esta trascendental obra tópicos como inflación, deuda, tipos de cambio, política externa y mercados emergentes. El marco conceptual descansa en la corriente de la escuela de Chicago, la cual parte del principio de que el mercado es el mecanismo que garantiza la creación del progreso en contraste con el Estado, que en su afán por encontrar soluciones perfectas, fracasa regularmente en sus cometidos.


2021 ◽  
Vol 39 (3) ◽  
pp. 293-301
Author(s):  
Samuel Huang ◽  
Kien Wei Siah ◽  
Detelina Vasileva ◽  
Shirley Chen ◽  
Lita Nelsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document