scholarly journals Comparative transcriptome and metabolome analyses provide new insights into the molecular mechanism underlying taproot thickening in Panax notoginseng

2019 ◽  
Author(s):  
Xue-Jiao Li ◽  
Jian-Li Yang ◽  
Ying-Chun Lu ◽  
Zhi-Long Qian ◽  
Ying Li ◽  
...  

Abstract Background Taproot thickening is a complex biological process and depends on the coordinated expression of the genes controlled by both environmental and developmental factors. Panax notoginseng is an important Chinese medicinal herb characterized by enlarged taproot as the main organ of saponin accumulation. However, little is known about the molecular mechanism of taproot enlargement. Results A total of 29957 DETs were identified during thickening process of P. notoginseng taproot. GO and KEGG pathway enrichment revealed that DETs associated wthith “plant hormone signal transduction”, “starch and sucrose metabolism”, and “phenylpropanoid biosynthesis” were predominantly enriched. Furher functional analysis by integrating DETs expression profiling, endogenous hormone and primary metabolite identified some critical genes (e.g., RNase-like major storage protein, DA1-related protein, Starch branching enzyme I) and primary metabolites (e.g., Sucrose, Glucose, Fructose Malate and Arginine) potentially controlling taproot thickening, and highlighted that hormones crosstalk, transcriptional regulation, homeostasis regulation of sugar and starch, and cell wall metabolism play an important role during thickening process of P. notoginseng taproot. Conclusion These results provide molecular regulatory network of taproot thickening in P. notoginseng and facilitate the characterization of genes responsible for taproot formation in root medicinal plants or crops.

2019 ◽  
Author(s):  
Xue-Jiao Li ◽  
Jian-Li Yang ◽  
Bing Hao ◽  
Ying-Chun Lu ◽  
Zhi-Long Qian ◽  
...  

Abstract Background Taproot thickening is a complex biological process and depends on the coordinated expression of the genes controlled by both environmental and developmental factors. Panax notoginseng is an important Chinese medicinal herb characterized by enlarged taproot as the main organ of saponin accumulation. However, little is known about the molecular mechanism of taproot enlargement. Results A total of 29957 DETs were identified during thickening process of P. notoginseng taproot. GO and KEGG pathway enrichment revealed that DETs associated wthith “plant hormone signal transduction”, “starch and sucrose metabolism”, and “phenylpropanoid biosynthesis” were predominantly enriched. Furher functional analysis by integrating DETs expression profiling, endogenous hormone and primary metabolite identified some critical genes (e.g., RNase-like major storage protein, DA1-related protein, Starch branching enzyme I) and primary metabolites (e.g., Sucrose, Glucose, Fructose Malate and Arginine) potentially controlling taproot thickening, and highlighted that hormones crosstalk, transcriptional regulation, homeostasis regulation of sugar and starch, and cell wall metabolism play an important role during thickening process of P. notoginseng taproot. Conclusion These results provide molecular regulatory network of taproot thickening in P. notoginseng and facilitate the characterization of genes responsible for taproot formation in root medicinal plants or crops.


2019 ◽  
Author(s):  
Xue-Jiao Li ◽  
Jian-Li Yang ◽  
Bing Hao ◽  
Ying-Chun Lu ◽  
Zhi-Long Qian ◽  
...  

Abstract Background Taproot thickening is a complex biological process and depends on the coordinated expression of the genes controlled by both environmental and developmental factors. Panax notoginseng is an important Chinese medicinal herb characterized by enlarged taproot as the main organ of saponin accumulation. However, little is known about the molecular mechanism of taproot enlargement. Results A total of 29957 DETs were identified during thickening process of P. notoginseng taproot. GO and KEGG pathway enrichment revealed that DETs associated wthith “plant hormone signal transduction”, “starch and sucrose metabolism”, and “phenylpropanoid biosynthesis” were predominantly enriched. Furher functional analysis by integrating DETs expression profiling, endogenous hormone and primary metabolite identified some critical genes (e.g., RNase-like major storage protein, DA1-related protein, Starch branching enzyme I) and primary metabolites (e.g., Sucrose, Glucose, Fructose Malate and Arginine) potentially controlling taproot thickening, and highlighted that hormones crosstalk, transcriptional regulation, homeostasis regulation of sugar and starch, and cell wall metabolism play an important role during thickening process of P. notoginseng taproot. Conclusion These results provide molecular regulatory network of taproot thickening in P. notoginseng and facilitate the characterization of genes responsible for taproot formation in root medicinal plants or crops.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Xue-Jiao Li ◽  
Jian-Li Yang ◽  
Bing Hao ◽  
Ying-Chun Lu ◽  
Zhi-Long Qian ◽  
...  

Abstract Background Taproot thickening is a complex biological process that is dependent on the coordinated expression of genes controlled by both environmental and developmental factors. Panax notoginseng is an important Chinese medicinal herb that is characterized by an enlarged taproot as the main organ of saponin accumulation. However, the molecular mechanisms of taproot enlargement are poorly understood. Results A total of 29,957 differentially expressed genes (DEGs) were identified during the thickening process in the taproots of P. notoginseng. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment revealed that DEGs associated with “plant hormone signal transduction,” “starch and sucrose metabolism,” and “phenylpropanoid biosynthesis” were predominantly enriched. Further analysis identified some critical genes (e.g., RNase-like major storage protein, DA1-related protein, and Starch branching enzyme I) and metabolites (e.g., sucrose, glucose, fructose, malate, and arginine) that potentially control taproot thickening. Several aspects including hormone crosstalk, transcriptional regulation, homeostatic regulation between sugar and starch, and cell wall metabolism, were identified as important for the thickening process in the taproot of P. notoginseng. Conclusion The results provide a molecular regulatory network of taproot thickening in P. notoginseng and facilitate the further characterization of the genes responsible for taproot formation in root medicinal plants or crops.


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1334
Author(s):  
Yuqing Huang ◽  
Shengguan Cai ◽  
Guoping Zhang ◽  
Songlin Ruan

Phosphite (PHI) has been used in the management of Phytophthora diseases since the 1970s.We assessed the effect of PHI on controlling the incidence of Xanthomonas oryzae pv.oryzae and Pyricularia grisea. As a result, PHI application significantly inhibited the incidence of the diseases. To clarify the molecular mechanism underlying this, a transcriptome study was employed. In total, 2064 differentially expressed genes (DEGs) were identified between control and PHI treatment. The key DEGs could be classified into phenylpropanoid biosynthesis (ko00940), starch and sucrose metabolism (ko00500), and plant hormone signal transduction (ko04075). The expressions of defense-related genes had a higher expression lever upon PHI treatment. This study provides new insights into the mechanism of protection effect of PHI against pathogens.


RSC Advances ◽  
2017 ◽  
Vol 7 (83) ◽  
pp. 52661-52671 ◽  
Author(s):  
Zhihong Yao ◽  
Shishi Li ◽  
Zifei Qin ◽  
Xiaodan Hong ◽  
Yi Dai ◽  
...  

Norbakuchinic acid (NBKA) is the most abundant metabolite of bakuchiol (a hepatotoxicity and nephrotoxicity component inPsoralea corylifoliaL.) in plasma and urine.


2020 ◽  
Author(s):  
Dejin Xie ◽  
Lingyan Chen ◽  
Chengcheng Zhou ◽  
Muhammad Waqqas Khan Tarin ◽  
Deming Yang ◽  
...  

Abstract Background Sarcandra glabra is an evergreen and traditional Chinese herb, having medicinal significance as anti-oxidant, anti-bacterial, anti-inflammatory, and anti-tumor. Recently, China has initiated to establish cultivation of this plant in greenhouse under artificial light-emitting diodes (LED). However, little is known regarding the effects of the different LED lights on plant growth, accumulation pattern of secondary metabolites, and the molecular mechanism of Sarcandra glabra. Results Compared to white light (WL), the red light (RL) increased the height and decreased the stem diameter and leaf area, while blue light (BL) suppressed the height and leaf area. According to our transcriptome profiling, some differentially expressed genes (DEGs) were enriched in the phenylpropanoid biosynthesis. We identified 46 unigenes encoding for almost all known enzymes involved in phenylpropanoid biosynthesis, while the expression level of RNA-seq and qPCR were largely consistent. Meanwhile, we found 53 unigenes encoding R2R3-MYB proteins and 53 unigenes encoding bHLH proteins that several of them were related to flavonoids biosynthesis. Based on metabolomic profiling, a total of 454 metabolites were detected and the distribution of chemicals varied significantly. While flavonoids, phenolic acids, and tannins were mainly located in leaves; Organic acids, lignans and coumarins, and terpenoids were much more abundant in WG (root tissue under WL). Meanwhile, the yields of most flavonoids from BY (leaf tissue under BL) and the synthesis of primarily targeted compounds was lower than in WY (leaf tissue under WL) and RY (leaf tissue under RL). Instead, the leaves grown under RL exhibited a greater production of bioactive phytochemicals such as esculetin, fraxetin, esculin, and scopoletin. Conclusion These results provide further insight into the molecular mechanism of metabolites accumulation patterns in S. glabra under different light conditions, enabling the development of optimum breeding conditions for this plant.


Sign in / Sign up

Export Citation Format

Share Document