scholarly journals L-3-n-butylphthalide protect the neuro by reducing inflammation and brain edema in rat intracerebral hemorrhage model

2019 ◽  
Author(s):  
Zhou Zeng ◽  
Xiyu Gong ◽  
Zhiping Hu

Abstract Background:Previous studies have shown that L-3-n-butylphthalide(NBP), which is a compound found in Apium graveolens Linn seed extracts, could have neuroprotective effects on acute ischemic stroke through anti-inflammation and by reducing brain edema. The pathological inflammatory pathways and consequent brain edema in intracerebral hemorrhage (ICH) share some characteristics with ischemic stroke. Methods:We hypothesized that NBP has anti-inflammatory and therapeutic effects on rats with ICH. ICH was induced by an infusion of bacterial collagenase type IV into the unilateral striatum of anesthetized rats. The therapeutic effect of NBP was measured by assessing neurological function, brain water content, blood-brain barrier permeability, and expression of tumor necrosis factor-alpha (TNF-α) and matrix metalloproteinase-9 (MMP-9) around the hematoma 48 hours after surgery. Magnetic resonance imaging (MRI) was performed 4 and 48 hours after ICH induction, and ICH-induced injured area volumes were measured using T2-weighted images. Results: The NBP treatment group performed better in the neurological function test than the vehicle group. Moreover, in comparison with the vehicle group, NBP group showed a lower expanded hematoma volume, brain water content, blood-brain barrier permeability, and TNF-α/ MMP-9 expression level. Conclusions:Our results suggested that NBP have a neuroprotective effect by reducing inflammation and brain edema in rat ICH model. Therefore, our findings also show the potential for clinical application of NBP in the treatment of ICH.

2019 ◽  
Author(s):  
Zhou Zeng ◽  
Xiyu Gong ◽  
Zhiping Hu

Abstract Background:Previous studies have shown that L-3-n-butylphthalide(NBP), which is a compound found in Apium graveolens Linn seed extracts, could have therapeutic effects on acute ischemic stroke through anti-inflammation and by reducing brain edema. The pathological inflammatory pathways and consequent brain edema in intracerebral hemorrhage (ICH) share some characteristics with ischemic stroke. Methods:We hypothesized that NBP has anti-inflammatory and therapeutic effects on rats with ICH. ICH was induced by an infusion of bacterial collagenase type IV into the unilateral striatum of anesthetized rats. The therapeutic effect of NBP was measured by assessing neurological function, brain water content, blood-brain barrier permeability, and expression of tumor necrosis factor-alpha (TNF-α) and matrix metalloproteinase-9 (MMP-9) around the hematoma 48 hours after surgery. Magnetic resonance imaging (MRI) was performed 4 and 48 hours after ICH induction, and ICH-induced injured area volumes were measured using T2-weighted images. Results: The NBP treatment group performed better in the neurological function test than the vehicle group. Moreover, in comparison with the vehicle group, NBP group showed a lower expanded hematoma volume, brain water content, blood-brain barrier permeability, and TNF-α/ MMP-9 expression level. Conclusions:Our results suggested that NBP attenuates inflammation and brain edema in rat ICH model. Therefore, our findings also show the potential for clinical application of NBP in the treatment of ICH. Keywords: L-3-n-butylphthalide; intracerebral haemorrhage; blood-brain barrier; brain edema; anti-inflammation


2011 ◽  
Vol 5 (2) ◽  
pp. 205-215 ◽  
Author(s):  
Li-Qing Wang ◽  
Heng-Jun Zhou ◽  
Cai-Fei Pan ◽  
Sheng-Mei Zhu ◽  
Lin-Mei Xu

Abstract Background: Secondary brain edema is a serious complication of hepatic encephalopathy (HE). Recently, it has been reported that proinflammatory cytokines are involved in the pathogenesis of brain edema during HE. Objectives: Observe the dynamic expressions of brain and plasma proinflammatory cytokines in encephalopathy rats, and evaluate the relationship between proinflammatory cytokines and brain edema. Methods: Acute HE rats were induced by intraperitoneal injection of thioacetamide (TAA) in 24 hours intervals for two consecutive days. Then, clinical symptom and stages of hepatic encephalopathy, motor activity counts, index of liver function, and brain water content were observed. The dynamic expressions of IL-1β, IL-6, and TNF-α in plasma and brain tissues were measured with enzyme-linked immunosorbent assay. Results: Typical clinical performances of hepatic encephalopathy were occurred in all TAA-administrated rats. The TAA rats showed lower motor activity counts and higher the index of alanine aminotransferase, aspartate aminotransferase, total bilirubin and ammonia than those in control rats. Brain water content was significantly enhanced in TAA rats compared with the control. The expressions of IL-1β, IL-6, and TNF- α in plasma and brain significantly increased in TAA rats. In addition, the expressions of cerebral proinflammatory cytokines were positively correlated with brain water content but negatively correlated with motor activity counts.Conclusion: Inflammation was involved in the pathogenesis of brain edema during TAA-induced HE.


2020 ◽  
Author(s):  
Shan Jiang ◽  
Chun-Mei Li ◽  
Ding-Fang Cai ◽  
Jing-Si Zhang ◽  
Xiao-Fei Yu

Abstract Background Blood-brain barrier (BBB) is a gate-keeping system with selective permeability that serves to protect the central nervous system. The underlying neuroprotective mechanism of the BBB during acute intracerebral hemorrhage (ICH) remains poorly understood. Rehmannia and rhubarb decoction (RRD) is a classic traditional Chinese medicine formula that has been extensively applied for hemorrhagic diseases in China. In the present study, the potential protective effects of RRD on the BBB during acute ICH and the underlying mechanism were investigated. Methods The ICH model was established by injection of autologous blood (100 µl) into spontaneously hypertensive rats, which were randomly divided into the following groups: i) Sham; ii) ICH; iii) RRD; iv) TAK-242; v) TAK-242 + RRD; vi) high mobility group box 1 protein (HMGB1) inhibitor ethyl pyruvate (EP); and vii) EP + RRD. Neurological deficits, pathological examination, brain water content, Evans blue(EB) extravasation, immunofluorescence staining and the expression levels of HMGB1, toll-like receptor 4 (TLR4), matrix metalloproteinase 9 (MMP-9), Claudin-5, Occludin and zona occludens − 1 (Zo-1) were subsequently examined in each group on day 3 following operation. In addition, MRI and transmission electron microscopy were also performed to observe the BBB structure. Results RRD treatment markedly improved neurological functions, reduced brain water content and Evans blue extravasation, ameliorated the disruption of BBB and downregulated HMGB1, TLR4 and MMP-9 expression whilst upregulating the expression of Claudin-5, Occludin and Zo-1. Conclusion These results demonstrate that RRD has a protective effect on the BBB in rats during ICH and this protective effect is related to the down-regulation of HMGB1/TLR4/MMP9 signaling pathway.


2018 ◽  
Vol 13 (1) ◽  
pp. 77-81
Author(s):  
Chen Peng ◽  
Shibo Duan ◽  
Lou Gang

AbstractObjectiveTo investigate the efficacy of Danhong injection on the serum concentration of tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) in rats with intracerebral hemorrhage (ICH) and evaluate its therapeutic effects on inflammation and cerebral edema.MethodsSixty male Wistar rats were randomly divided into control, model and Danhong groups with 25 rats in each group. Intracerebral injection of autologous arterial blood was performed on model and Danhong groups in order to establish intracerebral hemorrhage model. Rats in the control group were given the same operation procedure without blood injection. After successfully establishing the intracerebral hemorrhage model, the rats were given Danhong (2ml/kg/d) through intraperitoneal injection. Rats in the control and model groups were given the same amount of normal saline respectively. The brain water content (BWC) and serum level of TNF-α, IL-6 and NF-κB were measured in all groups at the time points of day 1, 3, 5, 7 and 9.ResultsThe neurological deficit score (NDS) were not statistical different in days 1, 3 and 5 between the model and Danhong group (P>0.05); However, on day 7 and 9 after modeling, the NDS in the Danhong group was significant lower than that of the Model group (P<0.05). The brain water content in the model and Danhong groups were significantly elevated compared to control group (P<0.05). The brain water content was significant elevated after modeling in the model and Danhong groups on day 3 and gradually decreased over the next 6 days.The brain water content was significantly higher in the model group for days 3 to 9 compared to the Danhong group (P<0.05). Compared to the model group, the serum NF-κb was significantly lower in the Danhong group for the time point of day 3 and 5 (P<0.05); However, compared to the model group, the serum TNF-α and IL-6 levels in the Danhong group were significantly lower for each time point (P<0.05). Conclusion Danhong injection can reduce cerebral edema in rats with cerebral hemorrhage, and protect the brain nerve function. These effects may be related to its function of regulating serum TNF-α, NF-κB and IL-6 expression.


2001 ◽  
Vol 280 (2) ◽  
pp. R547-R553 ◽  
Author(s):  
Gregory D. Sysyn ◽  
Katherine H. Petersson ◽  
Clifford S. Patlak ◽  
Grazyna B. Sadowska ◽  
Barbara S. Stonestreet

We showed that antenatal corticosteroids reduced blood-brain barrier permeability in fetuses at 60 and 80%, but not 90% of gestation, and decreased brain water content in fetuses. Our objective was to examine the effects of postnatal corticosteroids on regional blood-brain barrier permeability and brain water content in newborn lambs. Three dexamethasone treatment groups were studied in 3- to 5-day-old lambs. A 0.01 mg/kg dose was selected to estimate the amount of dexamethasone that might have reached fetuses via antenatal treatment of ewes in our previous studies. The other doses (0.25 and 0.5 mg/kg) were chosen to approximate those used clinically to treat infants with bronchopulmonary dysplasia. Lambs were randomly assigned to receive four intramuscular injections of dexamethasone or placebo given 12 h apart on days 3 and 4 of age. Blood-brain barrier function was measured with the blood-to-brain transfer constant ( K i) to α-aminoisobutyric acid, brain plasma volume was measured with polyethylene glycol for the calculation of K i, and brain water was measured by wet-to-dry tissue weights. Postnatal treatment with corticosteroids did not reduce barrier permeability in newborn lambs. Brain blood volume was higher in the 0.25 and 0.5 mg/kg dose dexamethasone groups than in the placebo group. Brain water content did not differ among the groups. We conclude that postnatal treatment with corticosteroids did not reduce regional blood-brain barrier permeability or brain water content but increased the brain plasma volume in newborn lambs. These findings are consistent with our previous work indicating that barrier permeability is responsive to corticosteroids at 60 and 80% of gestation and brain water regulation at 60% of gestation, but not in near-term fetuses or newborn lambs.


Stroke ◽  
2016 ◽  
Vol 47 (suppl_1) ◽  
Author(s):  
Thomas W Battey ◽  
Iris Y Zhou ◽  
Ann-Christin U Ostwaldt ◽  
Takahiro Igarashi ◽  
Philip Z Sun ◽  
...  

Introduction: Brain edema is an adverse complication of ischemic stroke, and is associated with substantial morbidity and mortality. We investigated whether relaxometry parameters of MRI are a reliable measure of brain edema in an animal model. Hypothesis: We hypothesize that quantitative relaxometry parameters of MRI in a rat model of stroke tightly correlate with brain edema. Methods: We permanently occluded the middle cerebral artery of 18 rats using the filament occlusion method. Fifteen surviving animals were imaged at 48 hours with a Bruker 4.7 T MRI scanner with Diffusion-weighted imaging (DWI), T1 and T2 maps, and proton-density weighted (PDW) imaging. Hemispheric and lesional volumes were generated on DWI. For quantitative T1, quantitative T2 and PDW images, signal intensity values relative to the contralateral hemisphere were determined. The percent water content in the rat brain was measured using the wet-dry method. Additional volumetric measurements of swelling were calculated based on hemisphere volumes determined on MRI. Correlation testing and logistic regression was performed to assess the relationship between imaging measures and swelling. Results: The mean lesion volume was 352 mm3. Brain water content and swelling volume were closely associated (r=0.80, p<0.001). PDW, T1 and T2 ratios highly correlated with brain water content (r=0.91, p<0.0001, r=0.94, p<0.0001 and r=0.97, p<0.0001, respectively). Ratios for PDW, T1 and T2 were also associated with swelling volume (r=0.67, p<0.0063, r=0.73, p<0.0022, and r=0.74, p<0.0017). Conclusion: Signal intensity ratios derived from PDW as well as quantitative T1 and T2 MRI can be leveraged to quantify brain water content and brain edema. These measures are useful markers for edema quantification that can be applied to any condition that leads to brain edema in both animal models and human patients.


2020 ◽  
Vol 12 (1) ◽  
pp. 001-008
Author(s):  
Ting Liu ◽  
Xing-Zhi Liao ◽  
Mai-Tao Zhou

Abstract Background Brain edema is one of the major causes of fatality and disability associated with injury and neurosurgical procedures. The goal of this study was to evaluate the effect of ulinastatin (UTI), a protease inhibitor, on astrocytes in a rat model of traumatic brain injury (TBI). Methodology A rat model of TBI was established. Animals were randomly divided into 2 groups – one group was treated with normal saline and the second group was treated with UTI (50,000 U/kg). The brain water content and permeability of the blood–brain barrier were assessed in the two groups along with a sham group (no TBI). Expression of the glial fibrillary acidic protein, endthelin-1 (ET-1), vascular endothelial growth factor (VEGF), and matrix metalloproteinase 9 (MMP-9) were measured by immunohistochemistry and western blot. Effect of UTI on ERK and PI3K/AKT signaling pathways was measured by western blot. Results UTI significantly decreased the brain water content and extravasation of the Evans blue dye. This attenuation was associated with decreased activation of the astrocytes and ET-1. UTI treatment decreased ERK and Akt activation and inhibited the expression of pro-inflammatory VEGF and MMP-9. Conclusion UTI can alleviate brain edema resulting from TBI by inhibiting astrocyte activation and ET-1 production.


2009 ◽  
Vol 110 (3) ◽  
pp. 462-468 ◽  
Author(s):  
Wang Gai Qing ◽  
Yang Qi Dong ◽  
Tang Qing Ping ◽  
Li Guang Lai ◽  
Li Dong Fang ◽  
...  

Object Brain edema formation following intracerebral hemorrhage (ICH) appears to be partly related to erythrocyte lysis and hemoglobin release. An increase of brain water content was associated with an increase of brain iron, which is an erythrocyte degradation product. Expression of AQP4 is highly modified in several brain disorders, and it can play a key role in cerebral edema formation. However, the question whether AQP4 is regulated by drugs lacks reliable evidence, and the interacting roles of iron overload and AQP4 in brain edema after ICH are unknown. The goal of this study was to clarify the relationship between iron overload and AQP4 expression and to characterize the effects of the iron chelator deferoxamine (DFO) on delayed brain edema after experimental ICH. Methods A total of 144 Sprague-Dawley rats weighing between 250 and 300 g were used in this work. The animals were randomly divided into 4 groups. The ICH models (Group C) were generated by injecting 100 μl autologous blood stereotactically into the right caudate nucleus; surgical control rats (Group B) were generated in a similar fashion, by injecting 100 μl saline into the right caudate nucleus. Intervention models (Group D) were established by intraperitoneal injection of DFO into rats in the ICH group. Healthy rats (Group A) were used for normal control models. Brain water content, iron deposition, and AQP4 in perihematomal brain tissue were evaluated over the time course of the study (1, 3, 7, and 14 days) in each group. Results Iron deposition was found in the perihematomal zone as early as the 1st day after ICH, reaching a peak after 7 days and remaining at a high level thereafter for at least 14 days following ICH. Rat brain water content around the hematoma increased progressively over the time course, reached its peak at Day 3, and still was evident at Day 7 post-ICH. Immunohistochemical analysis showed that AQP4 was richly expressed over glial cell processes surrounding microvessels in the rat brain; there was upregulation of the AQP4 expression in perihematomal brain during the observation period, and it reached maximum at 3 to 7 days after ICH. The changes of brain water content were accompanied by an alteration of AQP4. The application of the iron chelator DFO significantly reduced iron overload, brain water content, and AQP4 level in the perihematomal area compared with the control group. Conclusions Iron overload and AQP4 may play a critical role in the formation of brain edema after ICH. In addition, AQP4 expression was affected by iron concentration. Importantly, treatment with DFO significantly reduced brain edema in rats and inhibited the AQP4 upregulation after ICH. Deferoxamine may be a potential therapeutic agent for treating ICH.


Sign in / Sign up

Export Citation Format

Share Document