scholarly journals Genome-wide analysis of the citrus B3 superfamily and their association with somatic embryogenesis

2019 ◽  
Author(s):  
Zheng Liu ◽  
Xiao-Xia Ge ◽  
Xiao-Meng Wu ◽  
Ross G. Atkinson ◽  
Wen-Wu Guo

Abstract Background In citrus, genetic improvement via biotechnology is hindered by the obstacle of in vitro regeneration via somatic embryogenesis (SE). Although a few B3 transcription factors are reported to regulate embryogenesis, little is known about the B3 superfamily in citrus, and which members might be involved in SE.Results Genome-wide sequence analysis identified 72 ( CsB3 ) and 69 ( CgB3 ) putative B3 superfamily members in the genomes of sweet orange ( Citrus sinensis , polyembryonic) and pummelo ( C. grandis , monoembryonic), respectively. Genome duplication analysis indicated that segmental and tandem duplication events contributed to the expansion of the B3 superfamily in citrus, and that the B3 superfamily evolved under the effect of purifying selection. Phylogenetic relationships were well supported by conserved gene structure and motifs outside the B3 domain, which allowed possible functions to be inferred by comparison with homologous genes from Arabidopsis . Expression analysis identified 23 B3 superfamily members that were expressed during SE in citrus and 17 that may play functional roles at late SE stages. Eight B3 genes were identified that were specific to the genome of polyembryonic sweet orange compared to monoembryonic pummelo. Of these eight, CsARF19 was found to be specifically expressed at higher levels in embryogenic callus (EC), implying its possible involvement in EC initiation.Conclusions This study provides a genome-wide analysis of the citrus B3 superfamily, including its genome organization, evolutionary features and expression profiles, and identifies specific family members that may be associated with SE.

2020 ◽  
Author(s):  
Zheng Liu ◽  
Xiao-Xia Ge ◽  
Xiao-Meng Wu ◽  
Qiang Xu ◽  
Ross G. Atkinson ◽  
...  

Abstract Background: In citrus, genetic improvement via biotechnology is hindered by the obstacle of in vitro regeneration via somatic embryogenesis (SE). Although a few B3 transcription factors are reported to regulate embryogenesis, little is known about the B3 superfamily in citrus, and which members might be involved in SE.Results: Genome-wide sequence analysis identified 72 (CsB3) and 69 (CgB3) putative B3 superfamily members in the genomes of sweet orange (Citrus sinensis, polyembryonic) and pummelo (C. grandis, monoembryonic), respectively. Genome duplication analysis indicated that segmental and tandem duplication events contributed to the expansion of the B3 superfamily in citrus, and that the B3 superfamily evolved under the effect of purifying selection. Phylogenetic relationships were well supported by conserved gene structure and motifs outside the B3 domain, which allowed possible functions to be inferred by comparison with homologous genes from Arabidopsis. Expression analysis identified 23 B3 superfamily members that were expressed during SE in citrus and 17 that may play functional roles at late SE stages. Eight B3 genes were identified that were specific to the genome of polyembryonic sweet orange compared to monoembryonic pummelo. Of these eight B3 genes, CsARF19 was found to be specifically expressed at higher levels in embryogenic callus (EC), implying its possible involvement in EC initiation. Conclusions: This study provides a genome-wide analysis of the citrus B3 superfamily, including its genome organization, evolutionary features and expression profiles, and identifies specific family members that may be associated with SE.


2019 ◽  
Author(s):  
Zheng Liu ◽  
Xiao-Xia Ge ◽  
Xiao-Meng Wu ◽  
Wen-Wu Guo

Abstract Background In citrus, genetic improvement via biotechnology is hindered by the obstacle of in vitro regeneration via somatic embryogenesis (SE). Although a few of B3 transcription factors are reported to regulate embryogenesis, little is known about the possible roles of B3 superfamily during SE especially in citrus. Results In this study, a total of 72 (CsB3) and 69 (CgB3) putative B3 superfamily members were identified in the sweet orange (Citrus sinensis) and pummelo (C. grandis) genomes, respectively, each comprised four gene families and 14 phylogenetic classes. The B3 genes were unevenly distributed over citrus chromosomes and other non-anchored scaffolds. Genome duplication analysis indicated that the segmental and tandem duplication events have significantly contributed to the expansion of the citrus B3 superfamily. The evolutionary relationships among the B3 family members and their putative functions were deduced based on the results of phylogenetic analysis. Furthermore, transcriptomic analysis showed that citrus B3 genes have differential expression levels in various tissues, suggesting distinct biological roles of different members. Expression analysis revealed that the B3 superfamily members showed four types of expression profiles during SE in citrus and may play functional roles during SE, especially at late SE stages. Of them, CsARF19 is specifically expressed in sweet orange and at markedly higher levels in the embryogenic callus (EC), implying its possible involvement in EC initiation. Conclusions This study provides a genome-wide analysis of citrus B3 superfamily, including its genome organization, evolutionary features and expression profiles, which contributes to a better understanding of the B3 genes in citrus and their association with SE.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yuzhu Huo ◽  
Wangdan Xiong ◽  
Kunlong Su ◽  
Yu Li ◽  
Yawen Yang ◽  
...  

The plant-specific transcription factor TCPs play multiple roles in plant growth, development, and stress responses. However, a genome-wide analysis of TCP proteins and their roles in salt stress has not been declared in switchgrass (Panicum virgatum L.). In this study, 42 PvTCP genes (PvTCPs) were identified from the switchgrass genome and 38 members can be anchored to its chromosomes unevenly. Nine PvTCPs were predicted to be microRNA319 (miR319) targets. Furthermore, PvTCPs can be divided into three clades according to the phylogeny and conserved domains. Members in the same clade have the similar gene structure and motif localization. Although all PvTCPs were expressed in tested tissues, their expression profiles were different under normal condition. The specific expression may indicate their different roles in plant growth and development. In addition, approximately 20 cis-acting elements were detected in the promoters of PvTCPs, and 40% were related to stress response. Moreover, the expression profiles of PvTCPs under salt stress were also analyzed and 29 PvTCPs were regulated after NaCl treatment. Taken together, the PvTCP gene family was analyzed at a genome-wide level and their possible functions in salt stress, which lay the basis for further functional analysis of PvTCPs in switchgrass.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 730 ◽  
Author(s):  
Sun ◽  
Wang ◽  
Ma ◽  
Li ◽  
Liu

Auxin is well known to regulate growth and development processes. Auxin early response genes serve as a critical component of auxin signaling and mediate auxin regulation of diverse physiological processes. In the present study, a genome-wide identification and comprehensive analysis of auxin early response genes were conducted in upland cotton. A total of 71 auxin response factor (ARF), 86 Auxin/Indole-3-Acetic Acid (Aux/IAA), 63 Gretchen Hagen3 (GH3), and 194 small auxin upregulated RNA (SAUR) genes were identified in upland cotton, respectively. Phylogenetic analysis revealed that the ARF, GH3, and SAUR families were likely subject to extensive evolutionary divergence between Arabidopsis and upland cotton, while the Aux/IAA family was evolutionary conserved. Expression profiles showed that the ARF, Aux/IAA, GH3, and SAUR family genes were extensively involved in embryogenic competence acquisition of upland cotton callus. The Aux/IAA family genes generally showed a higher expression level in the non-embryogenic callus (NEC) of highly embryogenic cultivar CCRI24 than that of recalcitrant cultivar CCRI12, which may be conducive to initializing the embryogenic transformation. Auxin early response genes were tightly co-expressed with most of the known somatic embryogenesis (SE) related genes, indicating that these genes may regulate upland cotton SE by interacting with auxin early response genes.


2019 ◽  
Author(s):  
Licao Cui ◽  
Guang Yang ◽  
Jali Yan ◽  
Yan Pan ◽  
Xiaojun Nie

Abstract Background Mitogen-activated protein kinase (MAPK) cascade is a conserved and universal signal transduction module in organism. Although it has been well characterized in many plants, no systematic analysis has been conducted in the model cereal crop barley. Results Here, we identified 20 MAPKs, 6 MAPKKs and 156 MAPKKKs through a genome-wide search method using the latest published barley genomic data. Phylogenetic analysis assigned all the MAPK cascade genes into three groups in accordance to MAPK, MAPKK and MAPKKK family. Gene duplication revealed that segmental and tandem duplication events contributed to the expansion of barley MAPK cascade genes and the duplicated gene pairs were found to undergone strong purifying selection. Expression profiles of the HvMAPK, HvMAPKK and HvMAPKKKs were then investigated in different organs and under diverse stresses using the available 132 RNA-seq datasets, and then the tissue-specific and stress-responsive ones were found. Finally, co-expression regulatory network of MAPK cascade genes was constructed by WGCNA tool, resulting in a complicated network composed of a total of 72 branches containing 46 HvMAPK cascade genes and 46 miRNAs. Conclusion This study provides the candidates for further functional studies and also contribute to better understand the MAPK cascade regulatory network in barley and beyond.


2019 ◽  
Author(s):  
Licao Cui ◽  
Guang Yang ◽  
Jali Yan ◽  
Yan Pan ◽  
Xiaojun Nie

Abstract Background Mitogen-activated protein kinase (MAPK) cascade is a conserved and universal signal transduction module in organisms. Although it has been well characterized in many plants, no systematic analysis has been conducted in barley. Results Here, we identified 20 MAPKs, 6 MAPKKs and 156 MAPKKKs in barley through a genome-wide search against the updated reference genome. Then, phylogenetic relationship, gene structure and conserved protein motifs organization of them were systematically analyzed and results supported the predictions. Gene duplication analysis revealed that segmental and tandem duplication events contributed to the expansion of barley MAPK cascade genes and the duplicated gene pairs were found to undergone strong purifying selection. Expression profiles of them were further investigated in different organs and under diverse abiotic stresses using the available 173 RNA-seq datasets, and then the tissue-specific and stress-responsive candidates were found. Finally, co-expression regulatory network of MAPK cascade genes was constructed by WGCNA tool, resulting in a complicated network composed of a total of 72 branches containing 46 HvMAPK cascade genes and 46 miRNAs. Conclusion This study provides the targets for further functional study and also contribute to better understand the MAPK cascade regulatory network in barley and beyond.


Parasitology ◽  
2013 ◽  
Vol 140 (12) ◽  
pp. 1523-1533 ◽  
Author(s):  
J. HODGKINSON ◽  
K. CWIKLINSKI ◽  
N. J. BEESLEY ◽  
S. PATERSON ◽  
D. J. L. WILLIAMS

SUMMARYDespite years of investigation into triclabendazole (TCBZ) resistance in Fasciola hepatica, the genetic mechanisms responsible remain unknown. Extensive analysis of multiple triclabendazole-susceptible and -resistant isolates using a combination of experimental in vivo and in vitro approaches has been carried out, yet few, if any, genes have been demonstrated experimentally to be associated with resistance phenotypes in the field. In this review we summarize the current understanding of TCBZ resistance from the approaches employed to date. We report the current genomic and genetic resources for F. hepatica that are available to facilitate novel functional genomics and genetic experiments for this parasite in the future. Finally, we describe our own non-biased approach to mapping the major genetic loci involved in conferring TCBZ resistance in F. hepatica.


2020 ◽  
Vol 21 (6) ◽  
pp. 2209 ◽  
Author(s):  
Yuanyuan Wan ◽  
Zhen Wang ◽  
Jichun Xia ◽  
Shulin Shen ◽  
Mingwei Guan ◽  
...  

Phosphorus transporter (PHT) genes encode H2PO4−/H+ co-transporters that absorb and transport inorganic nutrient elements required for plant development and growth and protect plants from heavy metal stress. However, little is known about the roles of PHTs in Brassica compared to Arabidopsis thaliana. In this study, we identified and extensively analyzed 336 PHTs from three diploid (B. rapa, B. oleracea, and B. nigra) and two allotetraploid (B. juncea and B. napus) Brassica species. We categorized the PHTs into five phylogenetic clusters (PHT1–PHT5), including 201 PHT1 homologs, 15 PHT2 homologs, 40 PHT3 homologs, 54 PHT4 homologs, and 26 PHT5 homologs, which are unevenly distributed on the corresponding chromosomes of the five Brassica species. All PHT family genes from Brassica are more closely related to Arabidopsis PHTs in the same vs. other clusters, suggesting they are highly conserved and have similar functions. Duplication and synteny analysis revealed that segmental and tandem duplications led to the expansion of the PHT gene family during the process of polyploidization and that members of this family have undergone purifying selection during evolution based on Ka/Ks values. Finally, we explored the expression profiles of BnaPHT family genes in specific tissues, at various developmental stages, and under heavy metal stress via RNA-seq analysis and qRT-PCR. BnaPHTs that were induced by heavy metal treatment might mediate the response of rapeseed to this important stress. This study represents the first genome-wide analysis of PHT family genes in Brassica species. Our findings improve our understanding of PHT family genes and provide a basis for further studies of BnaPHTs in plant tolerance to heavy metal stress.


2021 ◽  
Author(s):  
Abhirup Paul ◽  
Archita Chatterjee ◽  
shreya Subrahmanya ◽  
Guoxin Shen ◽  
Neelam Mishra

Abstract Background Salt stress affects the plant growth and productivity worldwide and NHX is one of those genes that are well known to improve salt tolerance in transgenic plants. It is well characterized in several plants such as Arabidopsis and cotton however not much is known about NHXs in tea plant. Result In the present study, NHX genes of tea were obtained through a genome wide search using Arabidopsis thaliana as reference genome. Out of the 9 NHX genes in tea, 7 genes were localized in vacuole while the remaining 2 genes were localized in the endoplasmic reticulum (ER) (TEA014468.1) and plasma membrane (PM) (TEA006997.1) respectively. Furthermore, phylogenetic relationships along with structural analysis which includes gene structure, location as well as protein conserved motifs and domains, were systematically examined and further, predictions were validated by the expression analysis. The dN/dS values show that the majority of tea NHX genes are subjected to strong purifying selection under the course of evolution. Also, functional interaction was carried out in C. sinensis based on the orthologous genes in Arabidopsis. The expression profiles linked to various stress treatments revealed wide involvement of NHX genes from tea in response to various abiotic factors. Conclusion This study provides the targets for further comprehensive identification, functional study, and also contributed for a better understanding of the NHX regulatory network in C. sinensis.


Sign in / Sign up

Export Citation Format

Share Document