scholarly journals Genome-wide analysis of the citrus B3 superfamily and their association with somatic embryogenesis

2019 ◽  
Author(s):  
Zheng Liu ◽  
Xiao-Xia Ge ◽  
Xiao-Meng Wu ◽  
Wen-Wu Guo

Abstract Background In citrus, genetic improvement via biotechnology is hindered by the obstacle of in vitro regeneration via somatic embryogenesis (SE). Although a few of B3 transcription factors are reported to regulate embryogenesis, little is known about the possible roles of B3 superfamily during SE especially in citrus. Results In this study, a total of 72 (CsB3) and 69 (CgB3) putative B3 superfamily members were identified in the sweet orange (Citrus sinensis) and pummelo (C. grandis) genomes, respectively, each comprised four gene families and 14 phylogenetic classes. The B3 genes were unevenly distributed over citrus chromosomes and other non-anchored scaffolds. Genome duplication analysis indicated that the segmental and tandem duplication events have significantly contributed to the expansion of the citrus B3 superfamily. The evolutionary relationships among the B3 family members and their putative functions were deduced based on the results of phylogenetic analysis. Furthermore, transcriptomic analysis showed that citrus B3 genes have differential expression levels in various tissues, suggesting distinct biological roles of different members. Expression analysis revealed that the B3 superfamily members showed four types of expression profiles during SE in citrus and may play functional roles during SE, especially at late SE stages. Of them, CsARF19 is specifically expressed in sweet orange and at markedly higher levels in the embryogenic callus (EC), implying its possible involvement in EC initiation. Conclusions This study provides a genome-wide analysis of citrus B3 superfamily, including its genome organization, evolutionary features and expression profiles, which contributes to a better understanding of the B3 genes in citrus and their association with SE.

2019 ◽  
Author(s):  
Zheng Liu ◽  
Xiao-Xia Ge ◽  
Xiao-Meng Wu ◽  
Ross G. Atkinson ◽  
Wen-Wu Guo

Abstract Background In citrus, genetic improvement via biotechnology is hindered by the obstacle of in vitro regeneration via somatic embryogenesis (SE). Although a few B3 transcription factors are reported to regulate embryogenesis, little is known about the B3 superfamily in citrus, and which members might be involved in SE.Results Genome-wide sequence analysis identified 72 ( CsB3 ) and 69 ( CgB3 ) putative B3 superfamily members in the genomes of sweet orange ( Citrus sinensis , polyembryonic) and pummelo ( C. grandis , monoembryonic), respectively. Genome duplication analysis indicated that segmental and tandem duplication events contributed to the expansion of the B3 superfamily in citrus, and that the B3 superfamily evolved under the effect of purifying selection. Phylogenetic relationships were well supported by conserved gene structure and motifs outside the B3 domain, which allowed possible functions to be inferred by comparison with homologous genes from Arabidopsis . Expression analysis identified 23 B3 superfamily members that were expressed during SE in citrus and 17 that may play functional roles at late SE stages. Eight B3 genes were identified that were specific to the genome of polyembryonic sweet orange compared to monoembryonic pummelo. Of these eight, CsARF19 was found to be specifically expressed at higher levels in embryogenic callus (EC), implying its possible involvement in EC initiation.Conclusions This study provides a genome-wide analysis of the citrus B3 superfamily, including its genome organization, evolutionary features and expression profiles, and identifies specific family members that may be associated with SE.


2020 ◽  
Author(s):  
Zheng Liu ◽  
Xiao-Xia Ge ◽  
Xiao-Meng Wu ◽  
Qiang Xu ◽  
Ross G. Atkinson ◽  
...  

Abstract Background: In citrus, genetic improvement via biotechnology is hindered by the obstacle of in vitro regeneration via somatic embryogenesis (SE). Although a few B3 transcription factors are reported to regulate embryogenesis, little is known about the B3 superfamily in citrus, and which members might be involved in SE.Results: Genome-wide sequence analysis identified 72 (CsB3) and 69 (CgB3) putative B3 superfamily members in the genomes of sweet orange (Citrus sinensis, polyembryonic) and pummelo (C. grandis, monoembryonic), respectively. Genome duplication analysis indicated that segmental and tandem duplication events contributed to the expansion of the B3 superfamily in citrus, and that the B3 superfamily evolved under the effect of purifying selection. Phylogenetic relationships were well supported by conserved gene structure and motifs outside the B3 domain, which allowed possible functions to be inferred by comparison with homologous genes from Arabidopsis. Expression analysis identified 23 B3 superfamily members that were expressed during SE in citrus and 17 that may play functional roles at late SE stages. Eight B3 genes were identified that were specific to the genome of polyembryonic sweet orange compared to monoembryonic pummelo. Of these eight B3 genes, CsARF19 was found to be specifically expressed at higher levels in embryogenic callus (EC), implying its possible involvement in EC initiation. Conclusions: This study provides a genome-wide analysis of the citrus B3 superfamily, including its genome organization, evolutionary features and expression profiles, and identifies specific family members that may be associated with SE.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 730 ◽  
Author(s):  
Sun ◽  
Wang ◽  
Ma ◽  
Li ◽  
Liu

Auxin is well known to regulate growth and development processes. Auxin early response genes serve as a critical component of auxin signaling and mediate auxin regulation of diverse physiological processes. In the present study, a genome-wide identification and comprehensive analysis of auxin early response genes were conducted in upland cotton. A total of 71 auxin response factor (ARF), 86 Auxin/Indole-3-Acetic Acid (Aux/IAA), 63 Gretchen Hagen3 (GH3), and 194 small auxin upregulated RNA (SAUR) genes were identified in upland cotton, respectively. Phylogenetic analysis revealed that the ARF, GH3, and SAUR families were likely subject to extensive evolutionary divergence between Arabidopsis and upland cotton, while the Aux/IAA family was evolutionary conserved. Expression profiles showed that the ARF, Aux/IAA, GH3, and SAUR family genes were extensively involved in embryogenic competence acquisition of upland cotton callus. The Aux/IAA family genes generally showed a higher expression level in the non-embryogenic callus (NEC) of highly embryogenic cultivar CCRI24 than that of recalcitrant cultivar CCRI12, which may be conducive to initializing the embryogenic transformation. Auxin early response genes were tightly co-expressed with most of the known somatic embryogenesis (SE) related genes, indicating that these genes may regulate upland cotton SE by interacting with auxin early response genes.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yuzhu Huo ◽  
Wangdan Xiong ◽  
Kunlong Su ◽  
Yu Li ◽  
Yawen Yang ◽  
...  

The plant-specific transcription factor TCPs play multiple roles in plant growth, development, and stress responses. However, a genome-wide analysis of TCP proteins and their roles in salt stress has not been declared in switchgrass (Panicum virgatum L.). In this study, 42 PvTCP genes (PvTCPs) were identified from the switchgrass genome and 38 members can be anchored to its chromosomes unevenly. Nine PvTCPs were predicted to be microRNA319 (miR319) targets. Furthermore, PvTCPs can be divided into three clades according to the phylogeny and conserved domains. Members in the same clade have the similar gene structure and motif localization. Although all PvTCPs were expressed in tested tissues, their expression profiles were different under normal condition. The specific expression may indicate their different roles in plant growth and development. In addition, approximately 20 cis-acting elements were detected in the promoters of PvTCPs, and 40% were related to stress response. Moreover, the expression profiles of PvTCPs under salt stress were also analyzed and 29 PvTCPs were regulated after NaCl treatment. Taken together, the PvTCP gene family was analyzed at a genome-wide level and their possible functions in salt stress, which lay the basis for further functional analysis of PvTCPs in switchgrass.


Parasitology ◽  
2013 ◽  
Vol 140 (12) ◽  
pp. 1523-1533 ◽  
Author(s):  
J. HODGKINSON ◽  
K. CWIKLINSKI ◽  
N. J. BEESLEY ◽  
S. PATERSON ◽  
D. J. L. WILLIAMS

SUMMARYDespite years of investigation into triclabendazole (TCBZ) resistance in Fasciola hepatica, the genetic mechanisms responsible remain unknown. Extensive analysis of multiple triclabendazole-susceptible and -resistant isolates using a combination of experimental in vivo and in vitro approaches has been carried out, yet few, if any, genes have been demonstrated experimentally to be associated with resistance phenotypes in the field. In this review we summarize the current understanding of TCBZ resistance from the approaches employed to date. We report the current genomic and genetic resources for F. hepatica that are available to facilitate novel functional genomics and genetic experiments for this parasite in the future. Finally, we describe our own non-biased approach to mapping the major genetic loci involved in conferring TCBZ resistance in F. hepatica.


2020 ◽  
Author(s):  
Muhammad Zulfiqar Ahmad ◽  
Xiangsheng Zeng ◽  
Qiang Dong ◽  
Sehrish Manan ◽  
Huanan Jin ◽  
...  

Abstract Background: Members of the BAHD acyltransferase (ACT) family play important roles in plant defence against biotic and abiotic stresses. Previous genome-wide studies explored different acyltransferase gene families, but not a single study was found so far on the overall genome-wide or positive selection analyses of the BAHD family genes in Glycine max . A better understanding of the functions that specific members of this family play in stress defence can lead to better breeding strategies for stress tolerance. Results: A total of 103 genes of the BAHD family (GmACT genes) were mined from the soybean genome, which could be grouped into four phylogenetic clades (I- IV). Clade III was further divided into two sub-clades (IIIA and IIIB). In each clade, the constituent part of the gene structures and motifs were relatively conserved. These 103 genes were distributed unequally on all 20 chromosomes, and 16 paralogous pairs were found within the family. Positive selection analysis revealed important amino acids under strong positive selection, which suggests that the evolution of this gene family modulated soybean domestication. Most of the expression of ACT genes in soybean was repressed with Al 3+ and fungal elicitor exposure, except for GmACT84 , which expression increased in these conditions 2- and 3-fold, respectively. The promoter region of GmACT84 contains the maximum number of stress-responsive elements among all GmACT genes and is especially enriched in MYB-related elements. Some GmACT genes showed expression specific under specific conditions, while others showed constitutive expression in all soybean tissues or conditions analysed. Conclusions: This study provided a genome-wide analysis of the BAHD gene family and assessed their expression profiles. We found evidence of a strong positive selection of GmACT genes. Our findings will help efforts of functional characterisation of ACT genes in soybean in order to discover their involvement in growth, development, and defence mechanisms.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhenming Yu ◽  
Guihua Zhang ◽  
Jaime A. Teixeira da Silva ◽  
Mingzhi Li ◽  
Conghui Zhao ◽  
...  

Abstract Background DNA methylation is a conserved and important epigenetic modification involved in the regulation of numerous biological processes, including plant development, secondary metabolism, and response to stresses. However, no information is available regarding the identification of cytosine-5 DNA methyltransferase (C5-MTase) and DNA demethylase (dMTase) genes in the orchid Dendrobium officinale. Results In this study, we performed a genome-wide analysis of DoC5-MTase and DodMTase gene families in D. officinale. Integrated analysis of conserved motifs, gene structures and phylogenetic analysis showed that eight DoC5-MTases were divided into four subfamilies (DoCMT, DoDNMT, DoDRM, DoMET) while three DodMTases were divided into two subfamilies (DoDML3, DoROS1). Multiple cis-acting elements, especially stress-responsive and hormone-responsive ones, were found in the promoter region of DoC5-MTase and DodMTase genes. Furthermore, we investigated the expression profiles of DoC5-MTase and DodMTase in 10 different tissues, as well as their transcript abundance under abiotic stresses (cold and drought) and at the seedling stage, in protocorm-like bodies, shoots, and plantlets. Interestingly, most DoC5-MTases were downregulated whereas DodMTases were upregulated by cold stress. At the seedling stage, DoC5-MTase expression decreased as growth proceeded, but DodMTase expression increased. Conclusions These results provide a basis for elucidating the role of DoC5-MTase and DodMTase in secondary metabolite production and responses to abiotic stresses in D. officinale.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wei Su ◽  
Ali Raza ◽  
Liu Zeng ◽  
Ang Gao ◽  
Yan Lv ◽  
...  

Abstract Background Lipid phosphate phosphatases (LPP) are critical for regulating the production and degradation of phosphatidic acid (PA), an essential signaling molecule under stress conditions. Thus far, the LPP family genes have not been reported in rapeseed (Brassica napus L.). Results In this study, a genome-wide analysis was carried out to identify LPP family genes in rapeseed that respond to different stress conditions. Eleven BnLPPs genes were identified in the rapeseed genome. Based on phylogenetic and synteny analysis, BnLPPs were classified into four groups (Group I-Group IV). Gene structure and conserved motif analysis showed that similar intron/exon and motifs patterns occur in the same group. By evaluating cis-elements in the promoters, we recognized six hormone- and seven stress-responsive elements. Further, six putative miRNAs were identified targeting three BnLPP genes. Gene ontology analysis disclosed that BnLPP genes were closely associated with phosphatase/hydrolase activity, membrane parts, phosphorus metabolic process, and dephosphorylation. The qRT-PCR based expression profiles of BnLPP genes varied in different tissues/organs. Likewise, several gene expression were significantly up-regulated under NaCl, PEG, cold, ABA, GA, IAA, and KT treatments. Conclusions This is the first report to describe the comprehensive genome-wide analysis of the rapeseed LPP gene family. We identified different phytohormones and abiotic stress-associated genes that could help in enlightening the plant tolerance against phytohormones and abiotic stresses. The findings unlocked new gaps for the functional verification of the BnLPP gene family during stresses, leading to rapeseed improvement.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jian Li ◽  
Keyun Lin ◽  
Shuai Zhang ◽  
Jian Wu ◽  
Yujie Fang ◽  
...  

Myeloblastosis (MYB)-related transcription factors comprise a large subfamily of the MYB family. They play significant roles in plant development and in stress responses. However, MYB-related proteins have not been comprehensively investigated in rapeseed (Brassica napus L.). In the present study, a genome-wide analysis of MYB-related transcription factors was performed in rapeseed. We identified 251 Brassica napus MYB (BnMYB)-related members, which were divided phylogenetically into five clades. Evolutionary analysis suggested that whole genome duplication and segmental duplication events have played a significant role in the expansion of BnMYB-related gene family. Selective pressure of BnMYB-related genes was estimated using the Ka/Ks ratio, which indicated that BnMYB-related genes underwent strong purifying selection during evolution. In silico analysis showed that various development-associated, phytohormone-responsive, and stress-related cis-acting regulatory elements were enriched in the promoter regions of BnMYB-related genes. Furthermore, MYB-related genes with tissue or organ-specific, stress-responsive expression patterns were identified in B. napus based on temporospatial and abiotic stress expression profiles. Among the stress-responsive MYB-related genes, BnMRD107 was strongly induced by drought stress, and was therefore selected for functional study. Rapeseed seedlings overexpressing BnMRD107 showed improved resistance to osmotic stress. Our findings not only lay a foundation for further functional characterization of BnMYB-related genes, but also provide valuable clues to determine candidate genes for future genetic improvement of B. napus.


Sign in / Sign up

Export Citation Format

Share Document