scholarly journals First Isolation and Molecular Characterization of blaCTX-M-121-producting Escherichia coli O157:H7 from China Cattle

2019 ◽  
Author(s):  
Zhanqiang Su ◽  
Panpan Tong ◽  
Ling Zhang ◽  
Mengmeng Zhang ◽  
Dong Wang ◽  
...  

Abstract Background: To study antibiotic resistance and the molecular epidemiology of bovine Escherichia coli (E.coli) O157:H7 and to explore the intrinsic relationship among different isolates, we collected 27 strains of bovine E. coli O157:H7 in Xinjiang from 2012 to 2017 and assessed virulence genes, antibiotic resistance and pulsed-field gel electrophoresis (PFGE) molecular typing. Results: In this study, 21 strains carried at least one virulence gene, and 19 strains carried eae gene (70.4%) including 8 carrying stx1+stx2+eae +hly+tccP. Most strains were sensitive to all antibiotics tested, 4 strains were bacteria-resistant, and 2 strains possessed multi-drug resistance, including one ESBL-producing strain. This is the first report of a blaCTX-M-121 gene in bovine E. coli O157:H7. Moreover, blaCTX-M-121 gene can be transmitted horizontally by plasmid between strains. The PFGE spectral similarity of the 27 strains was between 65.8% and 100%. Two PFGE types including clusters Ⅰ and Ⅱ were obtained through cluster analysis. Conclusions: E. coli O157:H7 may have undergone clonal propagation in cattle farms as well as cross-regional transmission. A horizontal transmission path with E. coli O157:H7 appeared in different areas.

2020 ◽  
Author(s):  
Zhanqiang Su ◽  
Panpan Tong(Former Corresponding Author) ◽  
Ling Zhang ◽  
Mengmeng Zhang ◽  
Dong Wang ◽  
...  

Abstract Background: To study the antibiotic resistance, the molecular epidemiology of bovine Escherichia coli ( E.coli ) O157:H7, and exploring the intrinsic relationship among different isolates, we have collected 27 bovine E. coli O157:H7 strains in Xinjiang from 2012 to 2017 and evaluated virulence genes, antibiotic resistance, and pulsed-field gel electrophoresis (PFGE) molecular typing. Results: Of all the 27 bovine E. coli O157:H7 strains analyzed, 21 strains contained at least one virulence gene, 19 strains carried eae gene (70.4%) and 8 of them carrying stx1 + stx2 + eae + hly + tccP . Most strains were sensitive to all the antibiotics tested. However, 4 of which were antibiotic-resistant, and 2 of which possessed multi-drug resistance, including one ESBL-producing strain. This is the first report of the bla CTX-M-121 gene in bovine E. coli O157:H7. Moreover, the bla CTX-M-121 gene can be transmitted horizontally through plasmid between strains. The similarity of PFGE spectra of 27 strains was between 65.8% and 100%. Two types of PFGE were obtained through cluster analysis, including clusters Ⅰ and Ⅱ. Conclusions: E. coli O157:H7 may have undergone clonal propagation in cattle farms as well as cross-regional transmission and horizontal transmission in different regions in Xinjiang China.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zhanqiang Su ◽  
Panpan Tong ◽  
Ling Zhang ◽  
Mengmeng Zhang ◽  
Dong Wang ◽  
...  

The bovine Escherichia coli O157:H7 is a major foodborne pathogen causing severe bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome in humans. Cattle are recognized major reservoir and source of E. coli O157:H7. We investigated the antibiotic resistance, molecular profiles, and intrinsic relationship between 21 isolates of E. coli O157:H7 from cattle farms and slaughtering houses in Xinjiang. Using pulsed-field gel electrophoresis (PFGE) molecular typing, two types of PFGE were revealed through cluster analysis, including clusters I and II, with 66 and 100% similarity of PFGE spectra between 21 isolates. We also detected that 18 isolates (86%) carried at least one virulence gene, 16 isolates (76%) carried the eae gene, and 7 (33%) carried the stx1 + stx2 + eae + hly + tccp genes. Eighteen isolates were susceptible to antibiotics. Three isolates were resistant to antibiotics, and two were multidrug resistant. One of the two multidrug-resistant isolates detectably carried the blaCTX−M−121 gene. This is the first finding of the blaCTX−M−121 gene detected in E. coli O157:H7 isolated from cattle in Xinjiang. The blaCTX−M−121 gene is transferable between the bacterial strains via plasmid transmission. The results indicated that E. coli O157:H7 may have undergone clonal propagation in cattle population and cross-regional transmission in Xinjiang, China.


2021 ◽  
Vol 2 (2) ◽  
pp. 37-43
Author(s):  
Adaeze Joy Alu ◽  
Gabriel K. Omeiza ◽  
James A. Ameh ◽  
Enem S.I

Most Escherichia coli strains are harmless intestinal bacteria of animals, but some are implicated in food infection/poisoning especially Shiga toxin (or Vero toxin) producing E. coli (STEC) due to consumption of meat. This study was conducted to determine the prevalence and antibiotic resistance profile of Shigatoxigenic Escherichia coli O157 (STEC) from retailed miscellaneous fish and meat types in Abuja, Federal Capital Territory, Nigeria. A total of 256 meat and fish consisting of cow muscles, intestines, rumen-sacs, livers and tails, cat-fish, frozen fish (mackerel and herrings) were examined. Escherichia coli were isolated by enrichment culture cefixime-tellurite sorbitol MacConkey agar (CT-SMAC), morphological, biochemical, serotype latex agglutination and disk diffusion methods. Of the 256 samples, 138 (53.9%) were contaminated with E. coli and 28 (21.7%) E. coli strains were positive for Shigatoxigenic Escherichia coli O157 (STEC). Meat muscles had the highest prevalence of STEC (7.41%) among meat samples, followed by rumen-sacs (6.0%), intestines (5.77%), tails (4.0%), and the prevalence of STEC in Fish includes Cat-fish intestine (26.7%), skin (21.4%), Mackerel intestine (26.7%), skin (14.3%), and Herrings skin (15.4%), gill (7.1%). All the STEC assessed indicated multi-drug resistance, with the isolates showing 100% resistant to ampicilin, and erythromycin, nitrofurantoin (95.7%), amoxicilin clavulanic acid (84.3%), sulphamethaxazole/trimethoprim (75%), streptomycin (75%), tetracycline (66.17%), and gentamycin (53.6%). The isolates were susceptible to ciprofloxacin (66.7%), Cefoxitin (66.7%), amikacin (39.3%), and chloramphenicol (35.7%). The implication of STEC in this study suggests that contaminated meat types are sold to consumers and can result to serious foodborne hazards. Prescription of ciprofloxacin and cefoxicilin are recommended against this organism. Application of good hygienic procedures in meat and fish handling processes and proper boiling before consumption can mitigate the risk of infection due to resistance STEC strains.


2004 ◽  
Vol 67 (3) ◽  
pp. 486-492 ◽  
Author(s):  
GERRY P. SCHAMBERGER ◽  
FRANCISCO DIEZ-GONZALEZ

A previously identified set of anti– Escherichia coli O157:H7 colicinogenic E. coli were characterized to assess the suitability of these isolates as a preharvest food safety intervention in cattle. This collection of 23 E. coli strains were screened for virulence factors, antibiotic resistance, type of colicin(s) present, and their ability to inhibit other pathogenic E. coli. With the use of PCR, pathogen genes were detected in six of the 23 colicinogenic E. coli. When the nonpathogenic strains were assessed for antibiotic resistance, four strains showed resistance to at least one antibiotic. The remaining set of 14 strains were evaluated for the presence of previously identified colicins. Seven colicins (B, E1, E2/E7, E7, Ia/Ib, K, and M) were detected. One half of the strains possessed multiple types of colicins. The most commonly detected colicins were B, E2/E7, and M, which were found in six strains each. DNA sequencing was also performed in order to classify the E2/E7 colicins separately from E7 colicins. The 14 colicinogenic E. coli also were evaluated for their ability to inhibit 10 different non-O157 pathogenic E. coli. Six of the colicinogenic E. coli were capable of inhibiting all 10 pathogens, and the remaining eight strains could each inhibit between six to eight of the pathogenic E. coli. This strain collection has great potential for inhibiting E. coli O157:H7 in cattle.


2020 ◽  
Vol 17 (3) ◽  
pp. 0710
Author(s):  
Md Fazlul Karim Khan ◽  
Shah Samiur Rashid

A significant increase in the incidence of non-O157 verotoxigenic Escherichia coli (VTEC) infections have become a serious health issues, and this situation is worsening due to the dissemination of plasmid mediated multidrug-resistant microorganisms worldwide. This study aims to investigate the presence of plasmid-mediated verotoxin gene in non-O157 E. coli. Standard microbiological techniques identified a total of 137 E. coli isolates. The plasmid was detected by Perfectprep Plasmid Mini preparation kit. These isolates were subjected to disk diffusion assay, and plasmid curing with ethidium bromide treatment. The plasmid containing isolates were subjected to a polymerase chain reaction (PCR) for investigating the presence of plasmid mediated verotoxin gene (VT1 and VT2) in non-O157 E. coli. Among the 137 E. coli isolates, 49 isolates were non-O157 E. coli while 29 (59.1%) isolates were verotoxin producing non-O157 serotypes and 26 non-O157 VTEC isolates possessed plasmids. Certain isolates harboured single sized plasmid while others had multiple plasmids with different size varied from 1.8kb to 7.6kb. A plasmid containing all (100%) the isolates was multidrug-resistant. Eight isolates changed their susceptibility patterns while three isolates were found to lose plasmid after post plasmid curing treatment and the rest of the isolates (15) remained constant. Different PCR sets characterized 3 plasmid-mediated verotoxins producing non-O157 E. coli. This current study demonstrated the occurrence of plasmid mediated verotoxin gene in non-O157 E. coli. To the best of our knowledge, this is the first report in the global literature on plasmid-mediated verotoxin gene in non-O157 E. coli. Timely diagnosis and surveillance of VTEC infections should prioritize to stop or slow down the virulence gene for dissemination by plasmid-mediated gene transfer amongst the same bacteria or other species.


2004 ◽  
Vol 67 (12) ◽  
pp. 2651-2656 ◽  
Author(s):  
P. McGEE ◽  
L. SCOTT ◽  
J. J. SHERIDAN ◽  
B. EARLEY ◽  
N. LEONARD

Ruminant livestock, particularly cattle, is considered the primary reservoir of Escherichia coli O157:H7. This study examines the transmission of E. coli O157:H7 within groups of cattle during winter housing. Holstein Friesian steers were grouped in six pens of five animals. An animal inoculated with and proven to be shedding a marked strain of E. coli O157: H7 was introduced into each pen. Fecal (rectal swabs) and hide samples (900 cm2 from the right rump) were taken from the 36 animals throughout the study. Water, feed, and gate or partition samples from each pen were also examined. Within 24 h of introducing the inoculated animals into the pens, samples collected from the drinking water, pen barriers, and animal hides were positive for the pathogen. Within 48 h, the hides of 20 (66%) of 30 cohort animals from the six pens were contaminated with E. coli O157:H7. The first positive fecal samples from the noninoculated cohort animals were detected 3 days after the introduction of the inoculated steers. During the 23 days of the study, 15 of 30 cohort animals shed the marked E. coli O157: H7 strain in their feces on at least one occasion. Animal behavior in the pens was monitored during a 12-h period using closed circuit television cameras. The camera footage showed an average of 13 instances of animal grooming in each pen per hour. The study suggests that transmission of E. coli O157:H7 between animals may occur following ingestion of the pathogen at low levels and that animal hide may be an important source of transmission.


2008 ◽  
Vol 71 (10) ◽  
pp. 2082-2086 ◽  
Author(s):  
LUCIANO BENEDUCE ◽  
GIUSEPPE SPANO ◽  
ARI Q. NABI ◽  
FRANCESCO LAMACCHIA ◽  
SALVATORE MASSA ◽  
...  

In this study, 100 raw meat samples were collected from 15 local Moroccan butcheries in five different areas of the city of Rabat during a period of 4 months. Overall, 7 of 15 butcheries from three areas of the city yielded strains of Escherichia coli O157. Single isolates from 9 (9%) of 100 raw meat samples were biochemically and serologically confirmed as E. coli O157. Using molecular techniques, two strains were positive for the Shiga toxin, with two additional strains containing an attaching-effacing gene. All potentially virulent serotypes isolated from these meat samples showed distinct pulsed-field gel electrophoresis profiles. Based on antibiotic susceptibility testing, more than 70% of the isolates were resistant to ampicillin and clavulanic acid–amoxicillin. Moreover, one strain was resistant to more than three antibiotics. Our study represents the first survey of E. coli O157 and related serotypes in raw meat products in Morocco.


1999 ◽  
Vol 65 (4) ◽  
pp. 1397-1404 ◽  
Author(s):  
Lawrence Goodridge ◽  
Jinru Chen ◽  
Mansel Griffiths

ABSTRACT In this paper we describe evaluation and characterization of a novel assay that combines immunomagnetic separation and a fluorescently stained bacteriophage for detection of Escherichia coliO157:H7 in broth. When it was combined with flow cytometry, the fluorescent-bacteriophage assay (FBA) was capable of detecting 104 cells/ml. A modified direct epifluorescent-filter technique (DEFT) was employed in an attempt to estimate bacterial concentrations. Using regression analysis, we calculated that the lower detection limit was between 102 and 103cells/ml; however, the modified DEFT was found to be an unreliable method for determining bacterial concentrations. The results of this study show that the FBA, when combined with flow cytometry, is a sensitive technique for presumptive detection of E. coliO157:H7 in broth cultures.


Sign in / Sign up

Export Citation Format

Share Document