scholarly journals Sentiment Analysis of Online Product Reviews Using DLMNN and Future Prediction of Online Product Using IANFIS

2020 ◽  
Author(s):  
Sasikala p ◽  
Mary Immaculate Sheela

Abstract A major task that the NLP (Natural Language Processing) has to follow is Sentiments analysis (SA) or opinions mining (OM). For finding whether the user's attitude is positive, neutral or negative, it captures each user's opinion, belief, and feelings about the corresponding product. Through this, needed changes can well be done on the product for better customer contentment by the companies. Most of the existent techniques on SA aimed at these online products have extremely low accuracy and also encompassed more time amid training. By employing a Deep learning modified neural network (DLMNN), a technique is proposed aimed at SA of online products review; in addition, via Improved Adaptive Neuro-Fuzzy Inferences System (IANFIS), a technique is proposed aimed at future prediction of online products to trounce the above-stated issues. Firstly, the data values are separated into Contents-based (CB), Grades-based (GB), along with Collaborations based (CLB) setting as of the dataset. Then, each setting goes via review analysis (RA) by employing DLMNN, which renders the results as negative, positive, in addition to neutral reviews. IANFIS carry out a weighting factor and classification on the product for upcoming prediction. In the experimental assessment, the proposed work gave an enhanced performance compared to the existing methods.

2020 ◽  
Author(s):  
Sasikala p ◽  
Mary Immaculate Sheela

Abstract A major task that the NLP (Natural Language Processing) has to follow is Sentiments analysis (SA) or opinions mining (OM). For finding whether the user's attitude is positive, neutral or negative, it captures each user's opinion, belief, and feelings about the corresponding product. Through this, needed changes can well be done on the product for better customer contentment by the companies. Most of the existing techniques on SA for these online products encompass very low accuracy and also consumed more time during training. By utilizing a Deep learning modified neural network (DLMNN), a method is proposed for SA of online product review and by means of Improved Adaptive Neuro-Fuzzy Inference System (IANFIS), a method is proposed for future prediction of online products to trounce the above-stated issues. Initially, the data values are partitioned into Grade-based (GB), Content-based (CB), and Collaboration based (CLB) scenarios from the dataset. After that, each scenario goes through review analysis (RA) by utilizing DLMNN, which brings about the results as positive, negative, as well as neutral reviews. IANFIS performs a weighting factor and classification on the product for future prediction. In the experimental evaluation, the proposed system gave a better performance compared to the existing methods.


2020 ◽  
Author(s):  
Sasikala p ◽  
Mary Immaculate Sheela

Abstract Sentiment analysis or opinion mining is one of the major tasks of NLP (Natural Language Processing). It captures the user’s opinion, feelings, and belief regarding the respective product especially to determine whether the user’s attitude is positive, negative, or neutral. This analysis greatly helps the companies to make necessary changes in their product which in return can overcome the flaws that the product is facing and targets better customer satisfaction. Existing techniques for the sentiment analysis of online product reviews obtained low accuracy and also took more time for training. To overcome such issues in this paper, a DLMNN is proposed for sentiment analysis of online product review and IANFIS is proposed for future prediction of online product. Here, the sentiment analysis and future predictions are done on the products taken from the food review dataset. First, from the dataset, the data values are partitioned into GB, CB, and CLB scenarios and then the review analysis for each scenario is performed separately using DLMNN and they give the result as positive, negative, and neutral reviews for the product. After the process of review classification based on these three scenarios, the future prediction of the products is done by performing weighting factor and classification using IANFIS. Experimental results are compared with some existing techniques and the results show that the proposed method outperforms other existing algorithms.


10.2196/23230 ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. e23230
Author(s):  
Pei-Fu Chen ◽  
Ssu-Ming Wang ◽  
Wei-Chih Liao ◽  
Lu-Cheng Kuo ◽  
Kuan-Chih Chen ◽  
...  

Background The International Classification of Diseases (ICD) code is widely used as the reference in medical system and billing purposes. However, classifying diseases into ICD codes still mainly relies on humans reading a large amount of written material as the basis for coding. Coding is both laborious and time-consuming. Since the conversion of ICD-9 to ICD-10, the coding task became much more complicated, and deep learning– and natural language processing–related approaches have been studied to assist disease coders. Objective This paper aims at constructing a deep learning model for ICD-10 coding, where the model is meant to automatically determine the corresponding diagnosis and procedure codes based solely on free-text medical notes to improve accuracy and reduce human effort. Methods We used diagnosis records of the National Taiwan University Hospital as resources and apply natural language processing techniques, including global vectors, word to vectors, embeddings from language models, bidirectional encoder representations from transformers, and single head attention recurrent neural network, on the deep neural network architecture to implement ICD-10 auto-coding. Besides, we introduced the attention mechanism into the classification model to extract the keywords from diagnoses and visualize the coding reference for training freshmen in ICD-10. Sixty discharge notes were randomly selected to examine the change in the F1-score and the coding time by coders before and after using our model. Results In experiments on the medical data set of National Taiwan University Hospital, our prediction results revealed F1-scores of 0.715 and 0.618 for the ICD-10 Clinical Modification code and Procedure Coding System code, respectively, with a bidirectional encoder representations from transformers embedding approach in the Gated Recurrent Unit classification model. The well-trained models were applied on the ICD-10 web service for coding and training to ICD-10 users. With this service, coders can code with the F1-score significantly increased from a median of 0.832 to 0.922 (P<.05), but not in a reduced interval. Conclusions The proposed model significantly improved the F1-score but did not decrease the time consumed in coding by disease coders.


2021 ◽  
Author(s):  
Guangjie Li ◽  
Yi Tang ◽  
Biyi Yi ◽  
Xiang Zhang ◽  
Yan He

Code completion is one of the most useful features provided by advanced IDEs and is widely used by software developers. However, as a kind of code completion, recommending arguments for method calls is less used. Most of existing argument recommendation approaches provide a long list of syntactically correct candidate arguments, which is difficult for software engineers to select the correct arguments from the long list. To this end, we propose a deep learning based approach to recommending arguments instantly when programmers type in method names they intend to invoke. First, we extract context information from a large corpus of opensource applications. Second, we preprocess the extracted dataset, which involves natural language processing and data embedding. Third, we feed the preprocessed dataset to a specially designed convolutional neural network to rank and recommend actual arguments. With the resulting CNN model trained with sample applications, we can sort the candidate arguments in a reasonable order and recommend the first one as the correct argument. We evaluate the proposed approach on 100 open-source Java applications. Results suggest that the proposed approach outperforms the state-of-theart approaches in recommending arguments.


2018 ◽  
Vol 10 (11) ◽  
pp. 113 ◽  
Author(s):  
Yue Li ◽  
Xutao Wang ◽  
Pengjian Xu

Text classification is of importance in natural language processing, as the massive text information containing huge amounts of value needs to be classified into different categories for further use. In order to better classify text, our paper tries to build a deep learning model which achieves better classification results in Chinese text than those of other researchers’ models. After comparing different methods, long short-term memory (LSTM) and convolutional neural network (CNN) methods were selected as deep learning methods to classify Chinese text. LSTM is a special kind of recurrent neural network (RNN), which is capable of processing serialized information through its recurrent structure. By contrast, CNN has shown its ability to extract features from visual imagery. Therefore, two layers of LSTM and one layer of CNN were integrated to our new model: the BLSTM-C model (BLSTM stands for bi-directional long short-term memory while C stands for CNN.) LSTM was responsible for obtaining a sequence output based on past and future contexts, which was then input to the convolutional layer for extracting features. In our experiments, the proposed BLSTM-C model was evaluated in several ways. In the results, the model exhibited remarkable performance in text classification, especially in Chinese texts.


News is a routine in everyone's life. It helps in enhancing the knowledge on what happens around the world. Fake news is a fictional information madeup with the intension to delude and hence the knowledge acquired becomes of no use. As fake news spreads extensively it has a negative impact in the society and so fake news detection has become an emerging research area. The paper deals with a solution to fake news detection using the methods, deep learning and Natural Language Processing. The dataset is trained using deep neural network. The dataset needs to be well formatted before given to the network which is made possible using the technique of Natural Language Processing and thus predicts whether a news is fake or not.


2019 ◽  
Vol 8 (3) ◽  
pp. 8619-8622

People, due to their complexity and volatile actions, are constantly faced with challenges in understanding the situation in the market share and the forecast for the future. For any financial investment, the stock market is a very important aspect. It is necessary to study while understanding the price fluctuations of the stock market. In this paper, the stock market prediction model using the Recurrent Digital natural Network (RDNN) is described. The model is designed using two important machine learning concepts: the recurrent neural network (RNN), multilayer perceptron (MLP) and reinforcement learning (RL). Deep learning is used to automatically extract important functions of the stock market; reinforcement learning of these functions will be useful for future prediction of the stock market, the system uses historical stock market data to understand the dynamic market behavior when you make decisions in an unknown environment. In this paper, the understanding of the dynamic stock market and the deep learning technology for predicting the price of the future stock market are described.


2020 ◽  
Vol 8 (3) ◽  
pp. 234-238
Author(s):  
Nur Choiriyati ◽  
Yandra Arkeman ◽  
Wisnu Ananta Kusuma

An open challenge in bioinformatics is the analysis of the sequenced metagenomes from the various environments. Several studies demonstrated bacteria classification at the genus level using k-mers as feature extraction where the highest value of k gives better accuracy but it is costly in terms of computational resources and computational time. Spaced k-mers method was used to extract the feature of the sequence using 111 1111 10001 where 1 was a match and 0 was the condition that could be a match or did not match. Currently, deep learning provides the best solutions to many problems in image recognition, speech recognition, and natural language processing. In this research, two different deep learning architectures, namely Deep Neural Network (DNN) and Convolutional Neural Network (CNN), trained to approach the taxonomic classification of metagenome data and spaced k-mers method for feature extraction. The result showed the DNN classifier reached 90.89 % and the CNN classifier reached 88.89 % accuracy at the genus level taxonomy.


Author(s):  
Muhammad Zulqarnain ◽  
Rozaida Ghazali ◽  
Yana Mazwin Mohmad Hassim ◽  
Muhammad Rehan

<p>Text classification is a fundamental task in several areas of natural language processing (NLP), including words semantic classification, sentiment analysis, question answering, or dialog management. This paper investigates three basic architectures of deep learning models for the tasks of text classification: Deep Belief Neural (DBN), Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN), these three main types of deep learning architectures, are largely explored to handled various classification tasks. DBN have excellent learning capabilities to extracts highly distinguishable features and good for general purpose. CNN have supposed to be better at extracting the position of various related features while RNN is modeling in sequential of long-term dependencies. This paper work shows the systematic comparison of DBN, CNN, and RNN on text classification tasks. Finally, we show the results of deep models by research experiment. The aim of this paper to provides basic guidance about the deep learning models that which models are best for the task of text classification.</p>


Author(s):  
Ankita Singh ◽  
◽  
Pawan Singh

The Classification of images is a paramount topic in artificial vision systems which have drawn a notable amount of interest over the past years. This field aims to classify an image, which is an input, based on its visual content. Currently, most people relied on hand-crafted features to describe an image in a particular way. Then, using classifiers that are learnable, such as random forest, and decision tree was applied to the extract features to come to a final decision. The problem arises when large numbers of photos are concerned. It becomes a too difficult problem to find features from them. This is one of the reasons that the deep neural network model has been introduced. Owing to the existence of Deep learning, it can become feasible to represent the hierarchical nature of features using a various number of layers and corresponding weight with them. The existing image classification methods have been gradually applied in real-world problems, but then there are various problems in its application processes, such as unsatisfactory effect and extremely low classification accuracy or then and weak adaptive ability. Models using deep learning concepts have robust learning ability, which combines the feature extraction and the process of classification into a whole which then completes an image classification task, which can improve the image classification accuracy effectively. Convolutional Neural Networks are a powerful deep neural network technique. These networks preserve the spatial structure of a problem and were built for object recognition tasks such as classifying an image into respective classes. Neural networks are much known because people are getting a state-of-the-art outcome on complex computer vision and natural language processing tasks. Convolutional neural networks have been extensively used.


Sign in / Sign up

Export Citation Format

Share Document