scholarly journals Antimalarial activity of traditional Kampo medicine Coptis Rhizome extract and its major active compounds

2020 ◽  
Author(s):  
Awet Alem Teklemichael ◽  
Shusaku Mizukami ◽  
Kazufumi Toume ◽  
Farhana Mosaddeque ◽  
Mohamed Gomaa Kamel ◽  
...  

Abstract Background: The herbal medicine has been a rich source of new drugs exemplified by quinine and artemisinin. In this study, examined a variety of Japanese traditional herbal medicine (Kampo) for their potential antimalarial activities. Methods: We designed a comprehensive screening to identify novel antimalarial drugs from a library of Kampo herbal extracts (n = 120) and related compounds (n=96). The antimalarial activity was initially evaluated in vitro against chloroquine/mefloquine-sensitive (3D7) and -resistant (Dd2) strains of Plasmodium falciparum . The cytotoxicity was also evaluated using primary Adult Mouse Brain cells. After being selected through the first in vitro assay, positive extracts and compounds were examined for possible in vivo antimalarial activity. Results: Out of 120 herbal extracts, Coptis Rhizome showed the highest antimalarial activity (IC 50 1.9 µg/mL of 3D7 and 4.85 µg/mL of Dd2) with a high selectivity index (SI) > 263 (3D7) and > 103 (Dd2). Three major chlorinated compounds (coptisine, berberine, and palmatine) related to Coptis Rhizome also showed antimalarial activities with IC 50 1.1, 2.6, and 6.0 µM (against 3D7) and 3.1, 6.3, and 11.8 µM (against Dd2), respectively. Among them, coptisine chloride exhibited the highest antimalarial activity (IC 50 1.1 µM against 3D7 and 3.1 µM against Dd2) with SI of 37.8 and 13.2, respectively. . Finally, the herbal extract of Coptis Rhizome and its major active compound coptisine chloride exhibited significant antimalarial activity in mice infected with P. yoelii 17X strain with respect to its activity on parasite suppression consistently from day 3 to day 7 post-challenge. The effect ranged from 50.38 to 72.13% (P <.05) for Coptis Rhizome and from 81 to 89% (P <.01) for coptisine chloride. Conclusion: Coptis Rhizome and its major active compound coptisine chloride showed promising antimalarial activity against chloroquine-sensitive (3D7) and -resistant (Dd2) strains in vitro as well as in vivo mouse malaria model. Thus Kampo herbal medicine is a potential natural resource for novel antipathogenic agents.

2020 ◽  
Author(s):  
Awet Alem Teklemichael ◽  
Shusaku Mizukami ◽  
Kazufumi Toume ◽  
Farhana Mosaddeque ◽  
Mohamed Gomaa Kamel ◽  
...  

Abstract Background: The herbal medicine has been a rich source of new drugs exemplified by quinine and artemisinin. In this study, examined a variety of Japanese traditional herbal medicine (Kampo) for their potential antimalarial activities.Methods: We designed a comprehensive screening to identify novel antimalarial drugs from a library of Kampo herbal extracts (n = 120) and related compounds (n=96). The antimalarial activity was initially evaluated in vitro against chloroquine/mefloquine-sensitive (3D7) and -resistant (Dd2) strains of Plasmodium falciparum. The cytotoxicity was also evaluated using primary Adult Mouse Brain cells. After being selected through the first in vitro assay, positive extracts and compounds were examined for possible in vivo antimalarial activity.Results: Out of 120 herbal extracts, Coptis Rhizome showed the highest antimalarial activity (IC50 1.9 µg/mL of 3D7 and 4.85 µg/mL of Dd2) with a high selectivity index (SI) > 263 (3D7) and > 103 (Dd2). Three major chlorinated compounds (coptisine, berberine, and palmatine) related to Coptis Rhizome also showed antimalarial activities with IC50 1.1, 2.6, and 6.0 µM (against 3D7) and 3.1, 6.3, and 11.8 µM (against Dd2), respectively. Among them, coptisine chloride exhibited the highest antimalarial activity (IC50 1.1 µM against 3D7 and 3.1 µM against Dd2) with SI of 37.8 and 13.2, respectively. . Finally, the herbal extract of Coptis Rhizome and its major active compound coptisine chloride exhibited significant antimalarial activity in mice infected with P. yoelii 17X strain with respect to its activity on parasite suppression consistently from day 3 to day 7 post-challenge. The effect ranged from 50.38 to 72.13% (P <.05) for Coptis Rhizome and from 81 to 89% (P <.01) for coptisine chloride.Conclusion: Coptis Rhizome and its major active compound coptisine chloride showed promising antimalarial activity against chloroquine-sensitive (3D7) and -resistant (Dd2) strains in vitro as well as in vivo mouse malaria model. Thus Kampo herbal medicine is a potential natural resource for novel antipathogenic agents.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
M. O. Falade ◽  
D. O. Akinboye ◽  
G. O. Gbotosho ◽  
E. O. Ajaiyeoba ◽  
T. C. Happi ◽  
...  

Drug resistance inPlasmodium falciparumrequires that new drugs must be developed. Plants are a potential source for drug discovery and development. Two plants that used to treat febrile illnesses in Nigeria were tested forin vitroandin vivoantimalarial activity and cytotoxicity in cancer cell lines. Methanol, hexane, and ethyl acetate leaf extracts ofFicus thonningiiandLophira alatawere active inin vitroassays againstP. falciparumNF54 (sensitive) and K1 (multiresistant) strains. Hexane extracts ofF. thonningiiandL. alatawere the most effective extracts inin vitroassays with IC50of2.7±1.6 μg/mL and2.5±0.3 μg/mL for NF54 and10.4±1.6 μg/mL and2.5±2.1 μg/mL for K1 strain. All extracts were nontoxic in cytotoxicity assays against KB human cell line with IC50of over 20 μg/mL, demonstrating selectivity againstP. falciparum.In vivoanalysis shows that hexane extracts of both plants reduced parasitaemia. At the maximum dose tested,L. alatahad a 74.4% reduction of parasitaemia whileF. thonningiihad a reduction of 84.5%, both extracts prolonged animal survival in mice infected withP. bergheiNK65 when compared with vehicle treated controls. The antiplasmodial activity observed justifies the use of both plants in treating febrile conditions.


Author(s):  
María Fernanda García-Bustos ◽  
Agustín Moya Álvarez ◽  
Cecilia Pérez Brandan ◽  
Cecilia Parodi ◽  
Andrea Mabel Sosa ◽  
...  

Antimonials continue to be considered the first-line treatment for leishmaniases, but its use entails a wide range of side effects and serious reactions. The search of new drugs requires the development of methods more sensitive and faster than the conventional ones. We developed and validated a fluorescence assay based in the expression of tdTomato protein by Leishmania, and we applied this method to evaluate the activity in vitro of flavonoids and reference drugs. The pIR1SAT/tdTomato was constructed and integrated into the genome of Leishmania (Leishmania) amazonensis. Parasites were selected with nourseothricin (NTC). The relation of L. amaz/tc3 fluorescence and the number of parasites was determined; then the growth in vitro and infectivity in BALB/c mice was characterized. To validate the fluorescence assay, the efficacy of miltefosine and meglumine antimoniate was compared with the conventional methods. After that, the method was used to assess in vitro the activity of flavonoids; and the mechanism of action of the most active compound was evaluated by transmission electron microscopy and ELISA. A linear correlation was observed between the emission of fluorescence of L. amaz/tc3 and the number of parasites (r2 = 0.98), and the fluorescence was stable in the absence of NTC. No differences were observed in terms of infectivity between L. amaz/tc3 and wild strain. The efficacy of miltefosine and meglumine antimoniate determined by the fluorescence assay and the microscopic test showed no differences, however, in vivo the fluorescence assay was more sensitive than limiting dilution assay. Screening assay revealed that the flavonoid galangin (GAL) was the most active compound with IC50 values of 53.09 µM and 20.59 µM in promastigotes and intracellular amastigotes, respectively. Furthermore, GAL induced mitochondrial swelling, lipid inclusion bodies and vacuolization in promastigotes; and up-modulated the production of IL-12 p70 in infected macrophages. The fluorescence assay is a useful tool to assess the anti-leishmanial activity of new compounds. However, the assay has some limitations in the macrophage-amastigote model that might be related with an interfere of flavanol aglycones with the fluorescence readout of tdTomato. Finally, GAL is a promising candidate for the development of new treatment against the leishmaniasis.


2002 ◽  
Vol 175 (2) ◽  
pp. 289-296 ◽  
Author(s):  
T Usui ◽  
Y Ikeda ◽  
T Tagami ◽  
K Matsuda ◽  
K Moriyama ◽  
...  

Some plant compounds or herb mixtures are popular alternatives to conventional therapies and contain organic compounds that bind to some nuclear receptors, such as the estrogen receptor (ER), to exert various biological effects. We studied the effect of various herbal extracts on ERalpha and ERbeta isoforms. One herbal extract, Rhei rhizoma (rhubarb), acts as an agonist to both ERalpha and ERbeta. The phytochemical lindleyin, a major component of rhubarb, might contribute to this estrogenic activity through ERalpha and ERbeta. 4-Hydroxytamoxifen, an ER antagonist, completely reversed the estrogenic activity of lindleyin. Lindleyin binds to ERalpha in vitro, as demonstrated using a fluorescent polarization assay. The in vivo effect of rhubarb extract was studied using a vitellogenin assay system in the freshwater fish, Japanese medaka (Oryzias latipes). There were marked increases in serum vitellogenin levels in male medaka exposed to rhubarb extract. We conclude that lindleyin, a component of some herbal medicines, is a novel phytoestrogen and might trigger many of the biological responses evoked by the physiological estrogens.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Dejen Nureye ◽  
Solomon Assefa ◽  
Teshome Nedi ◽  
Ephrem Engidawork

Background. Evolution of antimalarial drug resistance makes the development of new drugs a necessity. Important source in search of such drugs is medicinal plants.Gardenia ternifoliaplant is used in Ethiopian traditional medicine for the treatment of malaria and is endowed within vitroantimalarial activity. Herein, thein vivoantimalarial activity of the plant was investigated.Methods. Acute toxicity was carried out using a standard procedure. A 4-day suppressive test was employed to evaluate the antimalarial effect of methanolic crude extract and solvent fractions of the plant. The curative and prophylactic effect of crude extract was further tested by Ranes’s test and residual infection procedure, respectively, usingPlasmodium berghei(ANKA strain) in Swiss albino mice.Results. The chemosuppressive effect exerted by the crude extract and fractions ranged between 30-59% and 14-51%, respectively. Curative and prophylactic effects of the crude extract were in the range of 36-63% and 24-37%, respectively. All dose levels of the crude extract prevented loss of weight, reduction in temperature, and anemia on early and established infection. Butanol and chloroform fractions also did reverse reduction in temperature, body weight, and packed cell volume.Conclusions. The results indicated that the plant has a promising antiplasmodial activity and it could be considered as a potential source to develop new antimalarial agents.


2008 ◽  
Vol 52 (4) ◽  
pp. 1215-1220 ◽  
Author(s):  
Nassira Mahmoudi ◽  
Ramon Garcia-Domenech ◽  
Jorge Galvez ◽  
Khemais Farhati ◽  
Jean-François Franetich ◽  
...  

ABSTRACT We conducted a quantitative structure-activity relationship (QSAR) study based on a database of 127 compounds previously tested against the liver stage of Plasmodium yoelii in order to develop a model capable of predicting the in vitro antimalarial activities of new compounds. Topological indices were used as structural descriptors, and their relation to antimalarial activity was determined by using linear discriminant analysis. A topological model consisting of two discriminant functions was created. The first function discriminated between active and inactive compounds, and the second identified the most active among the active compounds. The model was then applied sequentially to a large database of compounds with unknown activity against liver stages of Plasmodium. Seventeen drugs that were predicted to be active or inactive were selected for testing against the hepatic stage of P. yoelii in vitro. Antiretroviral, antifungal, and cardiotonic drugs were found to be highly active (nanomolar 50% inhibitory concentration values), and two ionophores completely inhibited parasite development. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed on hepatocyte cultures for all compounds, and none of these compounds were toxic in vitro. For both ionophores, the same in vitro assay as those for P. yoelii has confirmed their in vitro activities on Plasmodium falciparum. A similar topological model was used to estimate the octanol/water partition of each compound. These results demonstrate the utility of the QSAR and molecular topology approaches for identifying new drugs that are active against the hepatic stage of malaria parasites. We also show the remarkable efficacy of some drugs that were not previously reported to have antiparasitic activity.


2011 ◽  
Vol 2011 ◽  
pp. 1-17 ◽  
Author(s):  
Rupesh Thakur ◽  
Nitika Jain ◽  
Raghvendra Pathak ◽  
Sardul Singh Sandhu

Wounds are the result of injuries to the skin that disrupt the other soft tissue. Healing of a wound is a complex and protracted process of tissue repair and remodeling in response to injury. Various plant products have been used in treatment of wounds over the years. Wound healing herbal extracts promote blood clotting, fight infection, and accelerate the healing of wounds. Phytoconstituents derived from plants need to be identified and screened for antimicrobial activity for management of wounds. Thein vitroassays are useful, quick, and relatively inexpensive. Small animals provide a multitude of model choices for various human wound conditions. The study must be conducted after obtaining approval of the Ethics Committee and according to the guidelines for care and use of animals. The prepared formulations of herbal extract can be evaluated by various physicopharmaceutical parameters. The wound healing efficacies of various herbal extracts have been evaluated in excision, incision, dead space, and burn wound models.In vitroandin vivoassays are stepping stones to well-controlled clinical trials of herbal extracts.


Parasitology ◽  
2004 ◽  
Vol 129 (5) ◽  
pp. 525-542 ◽  
Author(s):  
S. HOUT ◽  
N. AZAS ◽  
A. DARQUE ◽  
M. ROBIN ◽  
C. DI GIORGIO ◽  
...  

Malaria is a major health concern particularly in Africa which has about 90% of the worldwide annual clinical cases. The increasing number of drug-resistantPlasmodium falciparumjustifies the search for new drugs in this field. Antimalarial activity of 2-substituted 6-nitro- and 6-amino-benzothiazoles and their anthranilic acids has been tested. Anin vitrostudy has been performed on W2 and 3D7 strains ofP. falciparumand on clinical isolates from malaria-infected patients. Toxicity has been assessed on THP1 human monocytic cells. For the most active drug candidates, thein vitrostudy was followed byin vivoassaysonP. berghei-infected mice and byin vitroassays in order to determine the stage-dependency and the mechanism of action. Of 39 derivatives testedin vitro, 2 had specific antimalarial properties. Each compound was active on all stages of the parasite, but one was markedly active on mature schizonts, while the other was more active on young schizont forms. Both drugs were also active on mitochondrial membrane potential.In vivodata confirmed efficiency with a sustained decrease of parasitaemia. Products A12 and C7 may be considered as potential antimalarial worthy of further chemical and biological research.


2020 ◽  
Author(s):  
Awet Alem Teklemichael ◽  
Shusaku Mizukami ◽  
Kazufumi Toume ◽  
Farhana Mosaddeque ◽  
Mohamed Gomaa Kamel ◽  
...  

Abstract Background: The herbal medicine has been an attractive source of new antimalarial drugs exemplified by quinine and artemisinin, thus we examined a variety of Japanese traditional herbal medicine (Kampo) for their potential antimalarial activities.Methods: We designed a comprehensive screening to identify novel antimalarial drugs from a library of Kampo crude drug extracts (n = 120). The antimalarial activity was initially evaluated in vitro against chloroquine/mefloquine-sensitive (3D7) and -resistant (Dd2) strains of Plasmodium falciparum. The cytotoxicity was also evaluated using primary Adult Mouse Brain cells. Subsequently, major active components of Kampo crude drug extracts showing high antimalarial activities and low cytotoxicity were further evaluated. Finally, the in vivo antimalarial activities of promising Kampo crude drug extract was investigated using P. yoelii infected mouse model in a seven-day suppressive test (treatment start two hours after challenge infection and continue for seven days).Results: Out of 120 extracts, Coptis Rhizome showed the highest antimalarial activity (IC50 1.9 µg/mL of 3D7 and 4.85 µg/mL of Dd2) with a high selectivity index (SI) > 263 (3D7) and > 103 (Dd2). Three major components in Coptis Rhizome also showed antimalarial activities with IC50 ranging from 1.1 to 6.0 µM (against 3D7) and from 3.1 to 11.8 µM (against Dd2). Among them, coptisine chloride exhibited the highest antimalarial activity (IC50 1.1 µM against 3D7 and 3.1 µM against Dd2) with SI of 37.8 and 13.2, respectively. Furthermore, Coptis Rhizome exhibited significant antimalarial activity in mice infected with P. yoelii 17X strain with respect to its activity on parasite suppression consistently throughout the entire test period (P < 0.05).Conclusion: Coptis Rhizome showed a significant in vivo antimalarial activity in mice infected with P. Yoelii, thus it is a potential natural resource for antimalarials and its component coptisine chloride is a promising antimalarial lead compound.


Author(s):  
IMDADUL HAQUE CHAUDHURY ◽  
PULAK DEB ◽  
SUMIT DAS

The major amount of active constituents comprises in herbal drugs with excellent bioactivity in vitro but less in vivo because of their poor lipid solubility and improper size of the molecules. This results in poor absorption and bioavailability of active constituents from the herbal extract. Herbosome technology enhances the bioavailability of herbal extracts. Herbosome act as the bridge between the novel delivery system and conventional delivery system. It is a complex of natural active ingredients and phospholipids (phosphatidylcholine, phosphatidylserine etc.) which increases absorption of herbal extract. Herbosome is the novel emerging technique applied to phytopharmaceuticals for the enhancement of bioavailability of herbal extract for medicinal applications. This article overviews about herbosome technology, recent advance, their application for various standardized herbal extracts and aims to provide complete scientific information, characterization about herbosomes as a promising drug delivery system.


Sign in / Sign up

Export Citation Format

Share Document