scholarly journals Antimalarial activity of traditional Kampo medicine Coptis Rhizome extract and its major active compounds

2020 ◽  
Author(s):  
Awet Alem Teklemichael ◽  
Shusaku Mizukami ◽  
Kazufumi Toume ◽  
Farhana Mosaddeque ◽  
Mohamed Gomaa Kamel ◽  
...  

Abstract Background: The herbal medicine has been an attractive source of new antimalarial drugs exemplified by quinine and artemisinin, thus we examined a variety of Japanese traditional herbal medicine (Kampo) for their potential antimalarial activities.Methods: We designed a comprehensive screening to identify novel antimalarial drugs from a library of Kampo crude drug extracts (n = 120). The antimalarial activity was initially evaluated in vitro against chloroquine/mefloquine-sensitive (3D7) and -resistant (Dd2) strains of Plasmodium falciparum. The cytotoxicity was also evaluated using primary Adult Mouse Brain cells. Subsequently, major active components of Kampo crude drug extracts showing high antimalarial activities and low cytotoxicity were further evaluated. Finally, the in vivo antimalarial activities of promising Kampo crude drug extract was investigated using P. yoelii infected mouse model in a seven-day suppressive test (treatment start two hours after challenge infection and continue for seven days).Results: Out of 120 extracts, Coptis Rhizome showed the highest antimalarial activity (IC50 1.9 µg/mL of 3D7 and 4.85 µg/mL of Dd2) with a high selectivity index (SI) > 263 (3D7) and > 103 (Dd2). Three major components in Coptis Rhizome also showed antimalarial activities with IC50 ranging from 1.1 to 6.0 µM (against 3D7) and from 3.1 to 11.8 µM (against Dd2). Among them, coptisine chloride exhibited the highest antimalarial activity (IC50 1.1 µM against 3D7 and 3.1 µM against Dd2) with SI of 37.8 and 13.2, respectively. Furthermore, Coptis Rhizome exhibited significant antimalarial activity in mice infected with P. yoelii 17X strain with respect to its activity on parasite suppression consistently throughout the entire test period (P < 0.05).Conclusion: Coptis Rhizome showed a significant in vivo antimalarial activity in mice infected with P. Yoelii, thus it is a potential natural resource for antimalarials and its component coptisine chloride is a promising antimalarial lead compound.

2020 ◽  
Author(s):  
Awet Alem Teklemichael ◽  
Shusaku Mizukami ◽  
Kazufumi Toume ◽  
Farhana Mosaddeque ◽  
Mohamed Gomaa Kamel ◽  
...  

Abstract Background: The herbal medicine has been a rich source of new drugs exemplified by quinine and artemisinin. In this study, examined a variety of Japanese traditional herbal medicine (Kampo) for their potential antimalarial activities. Methods: We designed a comprehensive screening to identify novel antimalarial drugs from a library of Kampo herbal extracts (n = 120) and related compounds (n=96). The antimalarial activity was initially evaluated in vitro against chloroquine/mefloquine-sensitive (3D7) and -resistant (Dd2) strains of Plasmodium falciparum . The cytotoxicity was also evaluated using primary Adult Mouse Brain cells. After being selected through the first in vitro assay, positive extracts and compounds were examined for possible in vivo antimalarial activity. Results: Out of 120 herbal extracts, Coptis Rhizome showed the highest antimalarial activity (IC 50 1.9 µg/mL of 3D7 and 4.85 µg/mL of Dd2) with a high selectivity index (SI) > 263 (3D7) and > 103 (Dd2). Three major chlorinated compounds (coptisine, berberine, and palmatine) related to Coptis Rhizome also showed antimalarial activities with IC 50 1.1, 2.6, and 6.0 µM (against 3D7) and 3.1, 6.3, and 11.8 µM (against Dd2), respectively. Among them, coptisine chloride exhibited the highest antimalarial activity (IC 50 1.1 µM against 3D7 and 3.1 µM against Dd2) with SI of 37.8 and 13.2, respectively. . Finally, the herbal extract of Coptis Rhizome and its major active compound coptisine chloride exhibited significant antimalarial activity in mice infected with P. yoelii 17X strain with respect to its activity on parasite suppression consistently from day 3 to day 7 post-challenge. The effect ranged from 50.38 to 72.13% (P <.05) for Coptis Rhizome and from 81 to 89% (P <.01) for coptisine chloride. Conclusion: Coptis Rhizome and its major active compound coptisine chloride showed promising antimalarial activity against chloroquine-sensitive (3D7) and -resistant (Dd2) strains in vitro as well as in vivo mouse malaria model. Thus Kampo herbal medicine is a potential natural resource for novel antipathogenic agents.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Getu Habte ◽  
Teshome Nedi ◽  
Solomon Assefa

Background. Malaria is among the leading causes of mortality and morbidity. Moreover, the emergence of resistance to antimalarial drugs is a major problem in controlling the disease. This makes the development of novel antimalarial drugs a necessity. Medicinal plants are important sources in discovering antimalarial drugs. Schinus molle is claimed for its antimalarial effect in Ethiopian folkloric medicine and endowed with in vitro antiplasmodial activity. In the present study, the in vivo antimalarial activity of the plant was investigated. Methods. Acute toxicity was carried out using a standard procedure. To screen the in vivo antimalarial potential of the S. molle against Plasmodium berghei (ANKA), a 4-day suppressive test was employed. The extracts and fractions were given to infected mice by oral gavage at 100, 200, and 400 mg/kg/day for four consecutive days. Parameters such as parasitemia were then evaluated. Results. Any sign of toxicity was not observed in the oral acute toxicity test. The crude extracts and solvent fractions exerted a significant (p<0.05) inhibition of parasite load compared to the negative control. The highest inhibition (66.91%) was exhibited by the 400 mg/kg/day dose of 80% methanolic crude extract. Among the fractions, chloroform fraction demonstrated maximal chemosuppressive effect (55.60%). Moreover, crude extracts and solvent fractions prevented body weight loss, reduction in temperature, and anemia compared to the negative control. Except the aqueous fraction, the tested plant extracts were able to significantly prolong the survival time of infected mice. Conclusion. The findings of the present study confirmed the safety and a promising in vivo antimalarial activity of S. molle, thus supporting the traditional claim and in vitro efficacy. In-depth investigations on the plant, however, are highly recommended.


2020 ◽  
Author(s):  
Monika Chaturvedi ◽  
Reena Rani ◽  
Dushyant Sharma ◽  
Jaya Parkash Yadav

Abstract Background: Malaria is a severe and sometimes mortal tropical disease that spreads through parasites. The purpose of the study was to evaluate in vitro and in-silicoantiplasmodial potential of Curcuma caesia extracts against Plasmodium falciparum.Methods: Lack of a vaccine and the widespread resistance to antimalarial drugs have resulted in emphasis on novel antimalarial drugs development. Ethyl acetate and methanol extracts of Curcuma caesia were prepared and analysed for their antiplasmodial activity against Chloroquine sensitive (3D7) and resistant (K1) strains of P. falciparumusingfluorescence-based SYBR Green assay. The cytotoxicity tests were carried out using the verocell lines by MTT assay.The phosphoethanolamine methyltransferase enzyme ((PfPMT) essential for growth of Plasmodium falciparum was used as protein target for in-silicostudy.Result: Curcuma caesia ethyl acetate extracts showedpotentantiplasmodial activitywith IC50 values of 3.37 µg/ml and 1.53 µg/ml against 3D7 and K1 strain respectively.Docking results show that β-selinenol an oxygenized sesquiterpene had the free binding energy of -6.76 Kcal/mol.Conclusion: Sesquiterpene present in the Curcuma caesia extract was responsible for antimalarial potential analyzed by molecular modeling. The present findings, however preliminary in nature. Further studies are required to proven the antimalarial efficacy C. caesia by isolating the active compounds and in vivo mechanism study that may contribute to more effective development of antimalarial drugs in the future.


2001 ◽  
Vol 52 (Supplement) ◽  
pp. 127
Author(s):  
Kanako ONO ◽  
Naoki OGURA ◽  
HyeSook KIM ◽  
Khurshida BEGUM ◽  
Yoshiaki HAMADA ◽  
...  

2021 ◽  
Vol 22 ◽  
Author(s):  
Cuiyan Liu ◽  
Yun Zhu ◽  
Yanfei He ◽  
Guangtai Fan ◽  
Jingang Gu ◽  
...  

Background: Carbonized herbal medicine has been used clinically for centuries in China; however, its influence on the bioavailability of compatible medicinal herbs is still unknown. Objective: To explore the effect of a carbonized herbal medicine on the in vivo adsorption and release and absorption of other active pharmaceutical ingredients in a compound prescription. Methods: The bioavailability of carbonized Herba schizonepetae (CHS) to eight active components (epiberberine, coptisine, palmatine, berberine, phellodendrine, aesculin, aesculetin, and anemoside B4) in the aqueous extract of Pulsatillae Decoction (PDAE) was evaluated by the in vitro adsorption and release and in vivo pharmacokinetics tests. Activated carbon (AC) was used as the control. Results: In vitro experiment showed that the cumulative adsorption rates of CHS to the eight active components were 33.17%, 54.32%, 21.48%, 42.01%, 39.1%, 25.11%, 32.11%, and 23.08% which was characterized by copsitine > berberine > phellodendrine > epiperberine > aesculetin > anemoside B4 > palmatine., and they were significantly lower than those of AC. The stable release concentration in sequence was 3.23, 3.04, 3.32, 7.29, 3.17, 2.80, 1.45, and 3.81 µg/mL, which was characterized by berberine > anemoside B4 > palmatine > epiberberine > phellodendrine > coptisine > aesculin > aesculetin, and they were significantly higher than those of AC. The animal experiment indicated that the areas under the concentration-time curve (AUC0-∞) of epiberberine, berberine, aesculetin, and anemoside B4 in PDAE+CHS group were significantly higher than those in the PDAE and PDAE+AC groups, and the other four components in the PDAE+CHS group were lower than those in PDAE group but higher than those in PDAE+AC group. Conclusion: CHS could significantly improve the bioavailability of epiberberine, berberine, aesculetin, and anemoside B4 in Pulsatillae Decoction and has a sustained-release effect on berberine, aesculin, aesculetin, and anemoside B4.


2020 ◽  
Author(s):  
Awet Alem Teklemichael ◽  
Shusaku Mizukami ◽  
Kazufumi Toume ◽  
Farhana Mosaddeque ◽  
Mohamed Gomaa Kamel ◽  
...  

Abstract Background: The herbal medicine has been a rich source of new drugs exemplified by quinine and artemisinin. In this study, examined a variety of Japanese traditional herbal medicine (Kampo) for their potential antimalarial activities.Methods: We designed a comprehensive screening to identify novel antimalarial drugs from a library of Kampo herbal extracts (n = 120) and related compounds (n=96). The antimalarial activity was initially evaluated in vitro against chloroquine/mefloquine-sensitive (3D7) and -resistant (Dd2) strains of Plasmodium falciparum. The cytotoxicity was also evaluated using primary Adult Mouse Brain cells. After being selected through the first in vitro assay, positive extracts and compounds were examined for possible in vivo antimalarial activity.Results: Out of 120 herbal extracts, Coptis Rhizome showed the highest antimalarial activity (IC50 1.9 µg/mL of 3D7 and 4.85 µg/mL of Dd2) with a high selectivity index (SI) > 263 (3D7) and > 103 (Dd2). Three major chlorinated compounds (coptisine, berberine, and palmatine) related to Coptis Rhizome also showed antimalarial activities with IC50 1.1, 2.6, and 6.0 µM (against 3D7) and 3.1, 6.3, and 11.8 µM (against Dd2), respectively. Among them, coptisine chloride exhibited the highest antimalarial activity (IC50 1.1 µM against 3D7 and 3.1 µM against Dd2) with SI of 37.8 and 13.2, respectively. . Finally, the herbal extract of Coptis Rhizome and its major active compound coptisine chloride exhibited significant antimalarial activity in mice infected with P. yoelii 17X strain with respect to its activity on parasite suppression consistently from day 3 to day 7 post-challenge. The effect ranged from 50.38 to 72.13% (P <.05) for Coptis Rhizome and from 81 to 89% (P <.01) for coptisine chloride.Conclusion: Coptis Rhizome and its major active compound coptisine chloride showed promising antimalarial activity against chloroquine-sensitive (3D7) and -resistant (Dd2) strains in vitro as well as in vivo mouse malaria model. Thus Kampo herbal medicine is a potential natural resource for novel antipathogenic agents.


2020 ◽  
Vol 26 ◽  
Author(s):  
Kondeti Ramudu Shanmugam ◽  
Bhasha Shanmugam ◽  
Gangigunta Venkatasubbaiah ◽  
Sahukari Ravi ◽  
Kesireddy Sathyavelu Reddy

Background : Diabetes is a major public health problem in the world. It affects each and every part of the human body and also leads to organ failure. Hence, great progress made in the field of herbal medicine and diabetic research. Objectives: Our review will focus on the effect of bioactive compounds of medicinal plants which are used to treat diabetes in India and other countries. Methods: Information regarding diabetes, oxidative stress, medicinal plants and bioactive compounds were collected from different search engines like Science direct, Springer, Wiley online library, Taylor and francis, Bentham Science, Pubmed and Google scholar. Data was analyzed and summarized in the review. Results and Conclusion: Anti-diabetic drugs that are in use have many side effects on vital organs like heart, liver, kidney and brain. There is an urgent need for alternative medicine to treat diabetes and their disorders. In India and other countries herbal medicine was used to treat diabetes. Many herbal plants have antidiabetic effects. The plants like ginger, phyllanthus, curcumin, aswagandha, aloe, hibiscus and curcuma showed significant anti-hyperglycemic activities in experimental models and humans. The bioactive compounds like Allicin, azadirachtin, cajanin, curcumin, querceitin, gingerol possesses anti-diabetic, antioxidant and other pharmacological properties. This review focuses on the role of bioactive compounds of medicinal plants in prevention and management of diabetes. Conclusion: Moreover, our review suggests that bioactive compounds have the potential therapeutic potential against diabetes. However, further in vitro and in vivo studies are needed to validate these findings.


2020 ◽  
Vol 16 ◽  
Author(s):  
Haicheng Liu ◽  
Yushi Futamura ◽  
Honghai Wu ◽  
Aki Ishiyama ◽  
Taotao Zhang ◽  
...  

Background: Malaria is one of the most devastating parasitic diseases, yet the discovery of antimalarial agents remains profoundly challenging. Very few new antimalarials have been developed in the past 50 years, while the emergence of drug-resistance continues to appear. Objective: This study focuses on the discovery, design, synthesis, and antimalarial evaluation of 3-cinnamamido-N-substituted benzamides. Method: In this study, a screening of our compound library was carried out against the multidrug-sensitive Plasmodium falciparum 3D7 strain. Derivatives of the hit were designed, synthesized and tested against P. falciparum 3D7 and the in vivo antimalarial activity of the most active compounds was evaluated using the method of Peters’ 4-day suppressive test. Results: The retrieved hit compound 1 containing a 3-cinnamamido-N-substituted benzamide skeleton showed moderate antimalarial activity (IC50 = 1.20 µM) for the first time. A series of derivatives were then synthesized through a simple four-step workflow, and half of them exhibited slightly better antimalarial effect than the precursor 1 during the subsequent in vitro assays. Additionally, compounds 11, 23, 30 and 31 displayed potent activity with IC50 values of approximately 0.1 µM, and weak cytotoxicity against mammalian cells. However, in vivo antimalarial activity is not effective which might be ascribed to the poor solubility of these compounds. Conclusion: In this study, phenotypic screen of our compound library resulted in the first report of 3-cinnamamide framework with antimalarial activity and 40 derivatives were then designed and synthesized. Subsequent structure-activity studies showed that compounds 11, 23, 30 and 31 exhibited the most potent and selective activity against P. falciparum 3D7 strain with IC50 values around 0.1 µM. Our work herein sets another example of phenotypic screen-based drug discovery, leading to potentially promising candidates of novel antimalarial agents once given further optimization.


Blood ◽  
1990 ◽  
Vol 76 (6) ◽  
pp. 1250-1255 ◽  
Author(s):  
S Whitehead ◽  
TE Peto

Abstract Deferoxamine (DF) has antimalarial activity that can be demonstrated in vitro and in vivo. This study is designed to examine the speed of onset and stage dependency of growth inhibition by DF and to determine whether its antimalarial activity is cytostatic or cytocidal. Growth inhibition was assessed by suppression of hypoxanthine incorporation and differences in morphologic appearance between treated and control parasites. Using synchronized in vitro cultures of Plasmodium falciparum, growth inhibition by DF was detected within a single parasite cycle. Ring and nonpigmented trophozoite stages were sensitive to the inhibitory effect of DF but cytostatic antimalarial activity was suggested by evidence of parasite recovery in later cycles. However, profound growth inhibition, with no evidence of subsequent recovery, occurred when pigmented trophozoites and early schizonts were exposed to DF. At this stage in parasite development, the activity of DF was cytocidal and furthermore, the critical period of exposure may be as short as 6 hours. These observations suggest that iron chelators may have a role in the treatment of clinical malaria.


2021 ◽  
Vol 22 (13) ◽  
pp. 7130
Author(s):  
Jeffersson Krishan Trigo-Gutierrez ◽  
Yuliana Vega-Chacón ◽  
Amanda Brandão Soares ◽  
Ewerton Garcia de Oliveira Mima

Curcumin (CUR) is a natural substance extracted from turmeric that has antimicrobial properties. Due to its ability to absorb light in the blue spectrum, CUR is also used as a photosensitizer (PS) in antimicrobial Photodynamic Therapy (aPDT). However, CUR is hydrophobic, unstable in solutions, and has low bioavailability, which hinders its clinical use. To circumvent these drawbacks, drug delivery systems (DDSs) have been used. In this review, we summarize the DDSs used to carry CUR and their antimicrobial effect against viruses, bacteria, and fungi, including drug-resistant strains and emergent pathogens such as SARS-CoV-2. The reviewed DDSs include colloidal (micelles, liposomes, nanoemulsions, cyclodextrins, chitosan, and other polymeric nanoparticles), metallic, and mesoporous particles, as well as graphene, quantum dots, and hybrid nanosystems such as films and hydrogels. Free (non-encapsulated) CUR and CUR loaded in DDSs have a broad-spectrum antimicrobial action when used alone or as a PS in aPDT. They also show low cytotoxicity, in vivo biocompatibility, and improved wound healing. Although there are several in vitro and some in vivo investigations describing the nanotechnological aspects and the potential antimicrobial application of CUR-loaded DDSs, clinical trials are not reported and further studies should translate this evidence to the clinical scenarios of infections.


Sign in / Sign up

Export Citation Format

Share Document