scholarly journals Relationship between structural and functional changes in glaucomatous eyes: A multifocal electroretinogram study

2020 ◽  
Author(s):  
Hiroki Tanaka ◽  
Kyoko Ishida ◽  
Kenji Ozawa ◽  
Akira Sawada ◽  
Kiyofumi Mochizuki ◽  
...  

Abstract Background: The association between the structure of the macular region and its function as measured by multifocal electroretinography (mfERG) and the mean thresholds (MT) of the visual field (VF) is not well-understood. Methods: The macular retinal nerve fiber layer (mRNFL) and the ganglion cell and inner plexiform layer (GCIPL) in six regions were measured by optical coherence tomography (OCT). For functional assessment, MT and mfERG scans with parameters of the second-order kernel responses within the central 5°, nasal to temporal amplitudes ratio (N/T), and the multifocal photopic negative response to B-wave ratio (mfPhNR/B) were measured. Forty-one glaucoma patients underwent OCT, mfERG, and MT measurement and 55 healthy subjects underwent mfERG. Results: The mfPhNR/B was significantly smaller ( P < 0.01) and the N/T was significantly larger ( P < 0.01) in glaucoma patients than in normal subjects. In glaucoma patients, the N/T is significantly correlated with the thickness of inferior and inferotemporal GCIPL ( r = -0.317 and -0.360, respectively) and MT of corresponding VF areas ( r = -0.330 and -0.334, respectively) (all P values < 0.05). The mfPhNR/B was significantly correlated with the thickness of mRNFL in the central area ( r = 0.365, P = 0.02) and with the MT of all corresponding VF areas ( r rages between 0.330 and 0.460, all P values < 0.04), except for the inferotemporal area. However, correlation was not observed between the N/T and the mfPhNR/B in any location. Conclusions: Significant differences exist between glaucoma and healthy participants in the N/T and mfPhNR/B. Correlations were observed between two mfERG parameters and OCT parameters or MT in glaucoma patients. Further research should seek to demonstrate whether the N/T and the mfPhNR/B should be applied in a complementary fashion.

2020 ◽  
Author(s):  
Hiroki Tanaka ◽  
Kyoko Ishida ◽  
Kenji Ozawa ◽  
Takuma Ishihara ◽  
Akira Sawada ◽  
...  

Abstract Background: The nasal to temporal amplitudes ratio (N/T) of multifocal electroretinography (mfERG) scans measured within 5° of the macula can be used to detect glaucomatous change. The photopic negative response (PhNR) of mfERG elicited by a circular stimulus centered on the fovea was significantly reduced in eyes with glaucoma. The PhNR to B-wave ratio (PhNR/B) is the optimal measure of the PhNR. However, clinical superiority for evaluating glaucoma patients has not been determined between N/T and PhNR/B yet. Methods: For morphological assessments, ganglion cell complex (GCC) in six regions and the average were measured by optical coherence tomography (OCT). For functional assessment, Humphrey visual fields (VF) with mean sensitivities (MT) and mfERG scans with parameters of N/T and the multifocal photopic negative response to B-wave ratio (mfPhNR/B) were measured. Sixty-nine eyes of forty-four glaucoma patients were included and correlations between mfERG parameters and OCT or VF parameters were evaluated. Results: The mean age of patients was 59.4 years. The mean deviation for all eyes obtained with the VF 30-2 and VF 10-2 was -7.00 and -6.31 dB, respectively. Significant correlations between GCC thickness or VF parameter and the N/T were found, especially in the inferior and inforotemporal retinal areas corresponding to superior and superonasal VF sectors (GCC vs N/T; coefficient = -7.916 and -7.857, and MT vs N/T ; coefficient = -4.302 and -4.437, in the inferior and inforotemporal retinal areas, respectively, all p values < 0.05). However, similar associations were not obtained between mfPhNR/B and OCT or VF parameters. The mfPhNR/B only in the inferotemporal sector was significantly correlated with the average thickness of GCC (coefficient = 4.823, P = 0.012). Conclusions: The N/T is better parameter than PhNR/B for the assessment of glaucomatous eyes in the current study’s measurement conditions. A future study modifying the stimuli and amplitudes to obtain the spatial correspondence to OCT and VF measurement will be required to evaluate the value of mfERG.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ga-In Lee ◽  
Kyung-Ah Park ◽  
Sei Yeul Oh ◽  
Doo-Sik Kong ◽  
Sang Duk Hong

AbstractWe evaluated postoperative retinal thickness in pediatric and juvenile craniopharyngioma (CP) patients with chiasmal compression using optical coherence tomography (OCT) auto-segmentation. We included 18 eyes of 18 pediatric or juvenile patients with CP and 20 healthy controls. Each thickness of the macular retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer, outer plexiform layer, outer nuclear layer, and photoreceptor layer was compared between the CP patients and healthy controls. There was significant thinning in the macular RNFL (estimates [μm], superior, − 10.68; inferior, − 7.24; nasal, − 14.22), all quadrants of GCL (superior, − 16.53; inferior, − 14.37; nasal, − 24.34; temporal, − 9.91) and IPL (superior, − 11.45; inferior, − 9.76; nasal, − 15.25; temporal, − 4.97) in pediatric and juvenile CP patients postoperatively compared to healthy control eyes after adjusting for age and refractive errors. Thickness reduction in the average and nasal quadrant of RNFL, GCL, and IPL was associated with peripapillary RNFL thickness, and reduced nasal quadrant GCL and IPL thicknesses were associated with postoperative visual field defects. In pediatric and juvenile patients with CP, decreased inner retinal layer thickness following chiasmal compression was observed. The changes in retinal structures were closely related to peripapillary RNFL thinning and functional outcomes.


2001 ◽  
Vol 18 (5) ◽  
pp. 781-787 ◽  
Author(s):  
TATIANA GRÜNDER ◽  
KONRAD KOHLER ◽  
ELKE GUENTHER

To determine how a progressive loss of photoreceptor cells and the concomitant loss of glutamatergic input to second-order neurons can affect inner-retinal signaling, glutamate receptor expression was analyzed in the Royal College of Surgeons (RCS) rat, an animal model of retinitis pigmentosa. Immunohistochemistry was performed on retinal sections of RCS rats and congenic controls between postnatal (P) day 3 and the aged adult (up to P350) using specific antibodies against N-methyl-D-aspartate (NMDA) subunits. All NMDA subunits (NR1, NR2A–2D) were expressed in control and dystrophic retinas at all ages, and distinct patterns of labeling were found in horizontal cells, subpopulations of amacrine cells and ganglion cells, as well as in the outer and inner plexiform layer (IPL). NR1 immunoreactivity in the inner plexiform layer of adult control retinas was concentrated in two distinct bands, indicating a synaptic localization of NMDA receptors in the OFF and ON signal pathways. In the RCS retina, these bands of NR1 immunoreactivity in the IPL were much weaker in animals older than P40. In parallel, NR2B immunoreactivity in the outer plexiform layer (OPL) of RCS rats was always reduced compared to controls and vanished between P40 and P120. The most striking alteration observed in the degenerating retina, however, was a strong expression of NR1 immunoreactivity in Müller cell processes in the inner retina which was not observed in control animals and which was present prior to any visible sign of photoreceptor degeneration. The results suggest functional changes in glutamatergic receptor signaling in the dystrophic retina and a possible involvement of Müller cells in early processes of this disease.


1985 ◽  
Vol 224 (1237) ◽  
pp. 475-488 ◽  

When cat retina is incubated in vitro with the fluorescent dye, 4',6- diamidino-2-phenyl-indole (DAPI), a uniform population of neurons is brightly labelled at the inner border of the inner nuclear layer. The dendritic morphology of the DAPI-labelled cells was defined by iontophoretic injection of Lucifer yellow under direct microscopic control: all the filled cells had the narrow-field bistratified morphology that is distinctive of the A ll amacrine cells previously described from Golgistained retinae. Although the A ll amacrines are principal interneurons in the rod-signal pathway, their density distribution does not follow the topography of the rod receptors, but peaks in the central area like the cone receptors and the ganglion cells. There are some 512000 A ll amacrines in the cat retina and their density ranges from 500 cells per square millimetre at the superior margin to 5300 cells per square millimetre in the centre (retinal area is 450 mm2). The isodensity contours are kite-shaped, particularly at intermediate densities, with a horizontal elongation towards nasal retina. The cell body size and the dendritic dimensions of A ll amacrines increase with decreasing cell density. The lobular dendrites in sublamina a of the inner plexiform layer span a restricted field of 16—45 pm diameter, while the arboreal dendrites in sublamina b form a varicose tree of 18—95 pm diameter. The dendritic field coverage of the lobular appendages is close to 1.0 (+ 0.2) at all eccentricities whereas the coverage of the arboreal dendrites doubles within the first 1.5 mm and then remains constant at 3.8 ( + 0.7) throughout the periphery.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Jingfei Chen ◽  
Qihui Luo ◽  
Chao Huang ◽  
Wen Zeng ◽  
Ping Chen ◽  
...  

Purpose. To investigate the changes of thickness in each layer, the morphology and density of inner neurons in rhesus monkeys’ retina at various growth stages, thus contribute useful data for further biological studies. Methods. The thickness of nerve fiber layer (NFL), the whole retina, inner plexiform layer (IPL), and outer plexiform layer (OPL) of rhesus monkeys at different ages were observed with hematoxylin and eosin (H&E) staining. The morphology and the density of inner neurons of rhesus monkey retina were detected by immunofluorescence. Results. The retina showed the well-known ten layers, the thickness of each retinal layer in rhesus monkeys at various ages increased rapidly after infant, and the retina was the thickest in adulthood, but the retinal thickness stop growing in senescent. Quantitative analysis showed that the maximum density of inner neurons was reached in adolescent, and then, the density of inner neurons decreased in adults and senescent retinas. And some changes in the morphology of rod bipolar cells have occurred in senescent. Conclusions. The structure of retina in rhesus monkeys is relatively immature at infant, and the inner retina of rhesus monkeys is mature in adolescent, while the thickness of each retinal layer was the most developed in the adult group. There was no significant change in senescence for the thickness of each retinal layer, but the number of the neurons in our study has a decreasing trend and the morphological structure has changed.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yong-Il Shin ◽  
Ki Yup Nam ◽  
Seong Eun Lee ◽  
Min-Woo Lee ◽  
Hyung-Bin Lim ◽  
...  

Abstract To evaluate changes in peripapillary microvascular parameters in diabetes mellitus (DM) patients using optical coherence tomography angiography (OCTA). Seventy-one diabetic patients (40 in the no diabetic retinopathy [DR] group and 31 in the non-proliferative DR [NPDR] group) and 50 control subjects. OCTA (Zeiss HD-OCT 5000 with AngioPlex) 6 × 6 mm scans centered on the optic disc were analyzed. Peripapillary vessel density (VD), perfusion density (PD) in superficial capillary plexus (SCP) were automatically calculated. The average macular ganglion cell-inner plexiform layer (mGC-IPL) and peripapillary retinal nerve fiber layer (pRNFL) thicknesses of the no DR and NPDR groups were significantly thinner than those of the control group. The no DR and NPDR groups showed lower peripapillary VD and PD in SCP compared with the control group. Using univariate regression analyses, the average mGC-IPL thickness, the pRNFL thickness, the no DR group and NPDR group were significant factors that affected the peripapillary VD and PD in SCP. Multivariate regression analyses showed that the grade of DR was a significant factor affecting the peripapillary VD and PD in SCP. OCTA revealed that peripapillary microvascular parameters in the no DR and NPDR groups were lower than those of normal controls. The peripapillary VD and PD in SCP were correlated with the mGC-IPL thickness, the pRNFL thickness, and the no DR and NPDR groups. Changes in peripapillary OCTA parameters may help with understanding the pathophysiology of DM and evaluating a potentially valuable biomarker for patients with subclinical DR.


2020 ◽  
Vol 21 (23) ◽  
pp. 9330
Author(s):  
Xandra Pereiro ◽  
Noelia Ruzafa ◽  
J. Haritz Urcola ◽  
Sansar C. Sharma ◽  
Elena Vecino

RNA binding protein with multiple splicing (RBPMS) is expressed exclusively in retinal ganglion cells (RGCs) in the retina and can label all RGCs in normal retinas of mice, rats, guinea pigs, rabbits, cats, and monkeys, but its function in these cells is not known. As a result of the limited knowledge regarding RBPMS, we analyzed the expression of RBPMS in the retina of different mammalian species (humans, pigs, and rats), in various stages of development (neonatal and adult) and with different levels of injury (control, hypoxia, and organotypic culture or explants). In control conditions, RBPMS was localized in the RGCs somas in the ganglion cell layer, whereas in hypoxic conditions, it was localized in the RGCs dendrites in the inner plexiform layer. Such differential distributions of RBPMS occurred in all analyzed species, and in adult and neonatal retinas. Furthermore, we demonstrate RBPMS localization in the degenerating RGCs axons in the nerve fiber layer of retinal explants. This is the first evidence regarding the possible transport of RBPMS in response to physiological damage in a mammalian retina. Therefore, RBPMS should be further investigated in relation to its role in axonal and dendritic degeneration.


Ophthalmology ◽  
2019 ◽  
Vol 126 (8) ◽  
pp. 1119-1130 ◽  
Author(s):  
Henry N. Marshall ◽  
Nicholas H. Andrew ◽  
Mark Hassall ◽  
Ayub Qassim ◽  
Emmanuelle Souzeau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document