Physiological characterization and gene mapping of a novel cuticular wax-related mutant in barley

2020 ◽  
Author(s):  
Yunxia Fang ◽  
Xiaoqin Zhang ◽  
Tao Tong ◽  
Ziling Zhang ◽  
Bin Tian ◽  
...  

Abstract Background: Cuticular wax is a type of lipid covering the surface of plants, which is directly related to crop stress resistance. Thus, it is important to study wax-related genes and their regulatory mechanism in wax biosynthesis pathway for improving stress resistance.Results: In this study, a wax-deficient barley mutant barley cuticular wax1(bcw1)was identified, and genetic analysis indicated that the trait was controlled by a single recessive nuclear gene. Phenotype observations showed that the tubule-shaped waxy crystals covering the sheath and stem epidermis of mutants disappeared, but there was no significant differences were detected in the leaf epidermis between mutant and wild type. Water loss data confirmed that the cuticular waxes and cutins improved plant resistance to drought stress. By combining the bulk segregant analysis (BSA) and specific locus amplified fragment sequencing (SLAF-seq) strategy, the wax-related gene BCW1 was located on chromosome 2 with a total length of 15.10 Mb. No cuticular wax-related genes have been reported in the regions, indicating that BCW1 is a novel gene that plays roles in cuticular wax biosynthesis and wax crystals formation.Conclusions: The research showed that mutation of BCW1 did not affect the crystal shape or cutin formation outside the leaf surfaces, but decreased the wax and cutin accumulation outside stems and sheaths. Therefore, our work provides the basis for the cloning of BCW1 and studying of the crystal self-assembly mechanism.

2019 ◽  
Author(s):  
Michael J. Strauss ◽  
Darya Asheghali ◽  
Austin Evans ◽  
Rebecca Li ◽  
Anton Chavez ◽  
...  

<p>Nanotubes assembled from macrocyclic precursors offer a unique combination of low dimensionality, structural rigidity, and distinct interior and exterior microenvironments. Usually the weak stacking energies of macrocycles limit the length or strength of the resultant nanotubes. Imine-linked macrocycles were recently found to assemble into high-aspect ratio (>10<sup>3</sup>), lyotropic nanotubes in the presence of excess acid. Yet these harsh conditions are incompatible with many functional groups and processing methods, and lower acid loadings instead catalyze macrocycle degradation. Here we report pyridine-2,6-diimine-linked macrocycles that assemble into high-aspect ratio nanotubes in the presence of less than 1 equiv of CF<sub>3</sub>CO<sub>2</sub>H per macrocycle. Analysis by gel permeation chromatography and fluorescence spectroscopy revealed a cooperative self-assembly mechanism. Nanofibers obtained by touch-spinning the pyridinium-based nanotubes exhibit Young’s moduli of 1.48 GPa, which exceeds that of many synthetic polymers and biological filaments. These findings will enable the design of structurally diverse nanotubes from synthetically accessible macrocycles. </p>


ACS Omega ◽  
2021 ◽  
Author(s):  
Juan M. Garcia-Garfido ◽  
Javier Enríquez ◽  
Ignacio Chi-Durán ◽  
Iván Jara ◽  
Leonardo Vivas ◽  
...  

2021 ◽  
Vol 22 (4) ◽  
pp. 1554
Author(s):  
Tawhidur Rahman ◽  
Mingxuan Shao ◽  
Shankar Pahari ◽  
Prakash Venglat ◽  
Raju Soolanayakanahally ◽  
...  

Cuticular waxes are a mixture of hydrophobic very-long-chain fatty acids and their derivatives accumulated in the plant cuticle. Most studies define the role of cuticular wax largely based on reducing nonstomatal water loss. The present study investigated the role of cuticular wax in reducing both low-temperature and dehydration stress in plants using Arabidopsis thaliana mutants and transgenic genotypes altered in the formation of cuticular wax. cer3-6, a known Arabidopsis wax-deficient mutant (with distinct reduction in aldehydes, n-alkanes, secondary n-alcohols, and ketones compared to wild type (WT)), was most sensitive to water loss, while dewax, a known wax overproducer (greater alkanes and ketones compared to WT), was more resistant to dehydration compared to WT. Furthermore, cold-acclimated cer3-6 froze at warmer temperatures, while cold-acclimated dewax displayed freezing exotherms at colder temperatures compared to WT. Gas Chromatography-Mass Spectroscopy (GC-MS) analysis identified a characteristic decrease in the accumulation of certain waxes (e.g., alkanes, alcohols) in Arabidopsis cuticles under cold acclimation, which was additionally reduced in cer3-6. Conversely, the dewax mutant showed a greater ability to accumulate waxes under cold acclimation. Fourier Transform Infrared Spectroscopy (FTIR) also supported observations in cuticular wax deposition under cold acclimation. Our data indicate cuticular alkane waxes along with alcohols and fatty acids can facilitate avoidance of both ice formation and leaf water loss under dehydration stress and are promising genetic targets of interest.


2006 ◽  
Vol 33 (10) ◽  
pp. 893 ◽  
Author(s):  
Hendrik Bargel ◽  
Kerstin Koch ◽  
Zdenek Cerman ◽  
Christoph Neinhuis

The cuticle is the main interface between plants and their environment. It covers the epidermis of all aerial primary parts of plant organs as a continuous extracellular matrix. This hydrophobic natural composite consists mainly of the biopolymer, cutin, and cuticular lipids collectively called waxes, with a high degree of variability in composition and structure. The cuticle and cuticular waxes exhibit a multitude of functions that enable plant life in many different terrestrial habitats and play important roles in interfacial interactions. This review highlights structure–function relationships that are the subjects of current research activities. The surface waxes often form complex crystalline microstructures that originate from self-assembly processes. The concepts and results of the analysis of model structures and the influence of template effects are critically discussed. Recent investigations of surface waxes by electron and X-ray diffraction revealed that these could be assigned to three crystal symmetry classes, while the background layer is not amorphous, but has an orthorhombic order. In addition, advantages of the characterisation of formation of model wax types on a molecular scale are presented. Epicuticular wax crystals may cause extreme water repellency and, in addition, a striking self-cleaning property. The principles of wetting and up-to-date concepts of the transfer of plant surface properties to biomimetic technical applications are reviewed. Finally, biomechanical studies have demonstrated that the cuticle is a mechanically important structure, whose properties are dynamically modified by the plant in response to internal and external stimuli. Thus, the cuticle combines many aspects attributed to smart materials.


2016 ◽  
Vol 40 (1) ◽  
pp. 571-577 ◽  
Author(s):  
Lu-feng Yang ◽  
De-qing Chu ◽  
Hui-lou Sun ◽  
Ge Ge

A proposed hierarchical self-assembly mechanism of the formation of flower-like vaterite superstructures.


2004 ◽  
Vol 2004 (1) ◽  
pp. 51-62 ◽  
Author(s):  
Mourad Elhabiri ◽  
Josef Hamacek ◽  
Jean-Claude G. Bünzli ◽  
Anne-Marie Albrecht-Gary

2002 ◽  
Vol 32 (11) ◽  
pp. 1961-1969 ◽  
Author(s):  
T H Jones ◽  
B M Potts ◽  
R E Vaillancourt ◽  
N W Davies

This study investigated the association between resistance of Eucalyptus globulus Labill. to autumn gum moth (Mnesempala privata Guenée) defoliation and cuticular wax compounds. In a field trial consisting of clonally replicated F2 families of E. globulus, situated in Tasmania, Australia, significant genetic variation in resistance was detected in two of three F2 families. The broad-sense heritability for defoliation within families ranged from 0.24 to 0.33. The 15 most resistant and the 15 most susceptible genotypes within each variable family were compared for their relative levels of 26 cuticular wax compounds. While no significant correlation between resistance and total wax yield estimates was found, significant differences were detected between resistant and susceptible classes in the relative quantities of several aliphatic phenylethyl and benzyl wax esters within both families. This association does not appear to be a response induced by defoliation. The broad-sense heritabilities of the variation in these compounds were high (0.82–0.94). Our findings suggest that these wax compounds are a mechanism of genetic resistance to autumn gum moth in E. globulus.


2017 ◽  
Vol 29 (3) ◽  
pp. 703-713 ◽  
Author(s):  
Błażej Dziuk ◽  
Christopher G. Gianopoulos ◽  
Krzysztof Ejsmont ◽  
Bartosz Zarychta

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Fengqing Han ◽  
Jingjing Huang ◽  
Qi Xie ◽  
Yumei Liu ◽  
Zhiyuan Fang ◽  
...  

Abstract Background The aerial organs of most terrestrial plants are covered by cuticular waxes, which impart plants a glaucous appearance and play important roles in protecting against various biotic and abiotic stresses. Despite many glossy green (wax-defective) mutants being well characterized in model plants, little is known about the genetic basis of glossy green mutant in broccoli. Results B156 is a spontaneous broccoli mutant showing a glossy green phenotype. Detection by scanning electron microscopy (SEM) and chromatography-mass spectrometry (GC-MS) revealed that B156 is a cuticular wax-defective mutant, lacking waxes mostly longer than C28. Inheritance analysis revealed that this trait was controlled by a single recessive gene, BoGL5. Whole-genome InDel markers were developed, and a segregating F2 population was constructed to map BoGL5. Ultimately, BoGL5 was mapped to a 94.1 kb interval on C01. The BoCER2 gene, which is homologous to the Arabidopsis CER2 gene, was identified as a candidate of BoGL5 from the target interval. Sequence analyses revealed that Bocer2 in B156 harbored a G-to-T SNP mutation at the 485th nucleotide of the CDS, resulting in a W-to-L transition at the 162nd amino acid, a conserved site adjacent to an HXXXD motif of the deduced protein sequence. Expression analysis revealed that BoCER2 was significantly down-regulated in the leaves, stems, and siliques of B156 mutant than that of B3. Last, ectopic expression of BoCER2 in A. thaliana could, whereas Bocer2 could not, rescue the phenotype of cer2 mutant. Conclusions Overall, this study mapped the locus determining glossy phenotype of B156 and proved BoCER2 is functional gene involved in cuticular wax biosynthesis which would promotes the utilization of BoCER2 to enhance plant resistance to biotic and abiotic stresses, and breeding of B. oleracea cultivars with glossy traits.


ACS Omega ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 3143-3155 ◽  
Author(s):  
Gopal Pandit ◽  
Karabi Roy ◽  
Umang Agarwal ◽  
Sunanda Chatterjee

Sign in / Sign up

Export Citation Format

Share Document