Coastal Microbiomes Reveal Associations between Pathogenic Vibrio Species, Environmental Factors, and Planktonic Communities

Author(s):  
Rachel E. Diner ◽  
Drishti Kaul ◽  
Ariel Rabines ◽  
Hong Zheng ◽  
Joshua A Steele ◽  
...  

Abstract Background Many species of coastal Vibrio spp. bacteria can infect humans, representing an emerging health threat linked to increasing seawater temperatures. Vibrio interactions with the planktonic community impact coastal ecology and human infection potential. In particular, interactions with eukaryotic and photosynthetic organism may provide attachment substrate and critical nutrients (e.g. chitin, phytoplankton exudates) that facilitate the persistence, diversification, and spread of pathogenic Vibrio spp.. Vibrio interactions with these organisms in an environmental context are, however, poorly understood. Results After quantifying pathogenic Vibrio species, including V. cholerae , V. parahaemolyticus , and V. vulnificus, over one year at 5 sites, we found that all three species reached high abundances, particularly during Summer months, and exhibited species-specific temperature and salinity distributions. Using metabarcoding we established a detailed profile of the both prokaryotic and eukaryotic coastal microbial communities, finding that pathogenic species were frequently associated with specific ASVs of chitin-producing eukaryotes such as diatoms and copepods. Furthermore, environmental variables had a significant effect not only on pathogenic Vibrio species but entire microbial communities, suggesting in some cases shared environmental preferences. Several significant ASV-level associations were revealed, indicating that commonly used broad taxonomic classifications (e.g. based on microbial class or Vibrio as a genus) likely mask ecologically important interactions. Shotgun metagenomic analyses revealed diverse vibrio communities that harbored additional potential vibrio pathogens, antibiotic resistance genes, and genes associated with virulence. Conclusions Taken together, this data shows that abundant pathogenic Vibrio species likely containing both antibiotic resistance and virulence-associated genes are associated with chitin producing organisms which could act as an attachment substrate, facilitating environmental persistence and horizontal gene transfer. Shared environmental conditions such as high temperatures were associated with both high levels of pathogenic vibrios and potential environmental reservoirs, which should be taken into consideration when modelling vibrio infection risk in the face of climate change and identifying biomarkers of pathogen species. Furthermore, ASV-level associations may be critical to understanding vibrio microbial ecology and should be taken into consideration while developing environmentally relevant laboratory model systems.

2019 ◽  
Author(s):  
Rachel E. Diner ◽  
Ariel J. Rabines ◽  
Hong Zheng ◽  
Joshua A. Steele ◽  
John F. Griffith ◽  
...  

Abstract Background Many species of coastal Vibrio spp. bacteria can infect humans, representing an emerging health threat linked to increasing seawater temperatures. Vibrio interactions with the planktonic community impact coastal ecology and human infection potential. In particular, interactions with eukaryotic and photosynthetic organism may provide attachment substrate and critical nutrients (e.g. chitin, phytoplankton exudates) that facilitate the persistence, diversification, and spread of pathogenic Vibrio spp. Vibrio interactions with these organisms in an environmental context are, however, poorly understood.Results We quantified pathogenic Vibrio species, including V. cholerae, V. parahaemolyticus, and V. vulnificus, and two virulence-associated genes for one year at five coastal sites in Southern California and used metabarcoding to profile associated prokaryotic and eukaryotic communities, including vibrio-specific communities. These Vibrio spp. reached high abundances, particularly during Summer months, and inhabited distinct species-specific environmental niches driven by temperature and salinity. Associated bacterial and eukaryotic taxa identified at fine-scale taxonomic resolution revealed genus and species-level relationships. For example, common Thalassiosira genera diatoms capable of exuding chitin were positively associated with V. cholerae and V. vulnificus in a species-specific manner, while the most abundant eukaryotic genus, the diatom Chaetoceros, was positively associated with V. parahaemolyticus. Associations were often linked to shared environmental preferences, and several copepod genera were linked to low-salinity environmental conditions and abundant V. cholerae and V. vulnificus.Conclusions This study clarifies ecological relationships between pathogenic Vibrio spp. and the planktonic community, elucidating new functionally relevant associations, establishing a workflow for examining environmental pathogen microbiomes, and highlighting prospective model systems for future mechanistic studies.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 230
Author(s):  
Shan Wan ◽  
Min Xia ◽  
Jie Tao ◽  
Yanjun Pang ◽  
Fugen Yu ◽  
...  

In this study, we used a metagenomic approach to analyze microbial communities, antibiotic resistance gene diversity, and human pathogenic bacterium composition in two typical landfills in China. Results showed that the phyla Proteobacteria, Bacteroidetes, and Actinobacteria were predominant in the two landfills, and archaea and fungi were also detected. The genera Methanoculleus, Lysobacter, and Pseudomonas were predominantly present in all samples. sul2, sul1, tetX, and adeF were the four most abundant antibiotic resistance genes. Sixty-nine bacterial pathogens were identified from the two landfills, with Klebsiella pneumoniae, Bordetella pertussis, Pseudomonas aeruginosa, and Bacillus cereus as the major pathogenic microorganisms, indicating the existence of potential environmental risk in landfills. In addition, KEGG pathway analysis indicated the presence of antibiotic resistance genes typically associated with human antibiotic resistance bacterial strains. These results provide insights into the risk of pathogens in landfills, which is important for controlling the potential secondary transmission of pathogens and reducing workers’ health risk during landfill excavation.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 333
Author(s):  
Emöke Páll ◽  
Mihaela Niculae ◽  
Gheorghe F. Brudașcă ◽  
Rustam Kh. Ravilov ◽  
Carmen Dana Șandru ◽  
...  

Antimicrobial and multidrug-resistant bacteria are a major problem worldwide and, consequently, the surveillance of antibiotic-resistant bacteria and assessment of the dissemination routes are essential. We hypothesized that migratory birds, coming from various environments, would carry more numerous Vibrio strains than sedentary species, with increased risk to be passed to their contacts or environment in habitats they transit or nest in. Similarly, we presumed that strains from migratory birds will show multidrug resistance. A total of 170 oral and rectal swabs were collected from wild birds captured in different locations of the Danube Delta (Malic, Sfantu-Gheorghe, Letea Forest) and processed using standardized selective media. V. cholerae strains were confirmed by serology and molecular methods and, subsequently, their susceptibility was evaluated. The prevalence of Vibrio species by host species, habitat type, and location was interpreted. The isolated Vibrio species were identified as Vibrio cholerae 14.33%, V. fluvialis 13.33%, V. alginolyticus 12%, V. mimicus 17.33%, V. vulnificus 10.88%, with V. parahaemolyticus and V. metschnikovii (16%) also being prevalent. Of the 76 Vibrio spp. isolates, 18.42% were resistant towards at least three antimicrobials, and 81.57% demonstrated a multidrug resistance phenotype, including mainly penicillins, aminoglycosides, and macrolides. The results of the present study indicate higher numbers of Vibrio strains in migratory (74.66%) than in sedentary birds (25.33%), confirming our hypothesis. Furthermore, the increased pathogenicity of Vibrio spp. strains, isolated from wild migratory and sedentary birds, was confirmed by their increased multiple antibiotic resistance (MAR) index (0.09–0.81).


2019 ◽  
Vol 6 (2) ◽  
pp. 456-466 ◽  
Author(s):  
Lin Qi ◽  
Yuan Ge ◽  
Tian Xia ◽  
Ji-Zheng He ◽  
Congcong Shen ◽  
...  

This study demonstrates that rare earth oxide nanoparticles can enhance soil microbial antibiotic resistance by inducing the enrichment and spread of antibiotic resistance genes in soil microbial communities.


2019 ◽  
Vol 10 ◽  
Author(s):  
Caroline Stéphanie Achard ◽  
Véronique Dupouy ◽  
Suzanne Siviglia ◽  
Nathalie Arpaillange ◽  
Laurent Cauquil ◽  
...  

Author(s):  
Qingyao Wang ◽  
Songzhe Fu ◽  
Qian Yang ◽  
Jingwei Hao ◽  
Can Zhou ◽  
...  

The estuary is the ecological niche of pathogenic Vibrio spp. as it provides abundant organic and inorganic nutrients from seawater and rivers. However, little is known about the ecology of these Vibrio species in the inland brackish water area. In this study, their co-occurrence and relationships to key environmental constraints (salinity and temperature) in the Hun-Tai River of China were examined using the most probable number polymerase chain reaction (MPN-PCR) approach. We hereby report 2-year continuous surveillance based on six water indices of the Hun-Tai River. The results showed that seawater intrusion maximally reached inland as far as 26.5 km for the Hun-Tai River. Pathogenic Vibrio spp. were detected in 21.9% of the water samples. In particular, V. cholerae, V. parahaemolyticus, and V. vulnificus were isolated in 10 (10.4%), 20 (20.8.5%), and 2 (2.08%) samples, respectively. All V. parahaemolyticus strains were tdh gene negative, 10% were positive for the trh gene. Multi-locus sequence typing (MLST) divided V. parahaemolyticus strains into 12 sequence types (STs) for the Hun-Tai River. Five STs were respectively present in various locations along the Hun-Tai River. The PCR assay for detecting six virulence genes and Vibrio seventh pandemic island I and II revealed three genotypes in 12 V. cholerae isolates. The results of our study showed that seawater intrusion and salinity have profound effects on the distribution of pathogenic Vibrio spp. in the inland river, suggesting a potential health risk associated with the waters of the Hun-Tai River used for irrigation and drinking.


Sign in / Sign up

Export Citation Format

Share Document