scholarly journals Reducing Interference via Link Adaptation in Delay-Critical Wireless Networks

Author(s):  
Silvio Mandelli ◽  
Alessandro Lieto ◽  
Mark Razenberg ◽  
Andreas Weber ◽  
Thorsten Wild

Abstract One of the current 6G wireless networks research's trends is to investigate short distance and dense scenarios, where users are locally connected in sub-networks. Such use case is critical to support the advances of industrial internet of things or Industry 4.0, e.g. connecting an entire group of sensors and actuators of a robot. Therefore, schemes that can properly manage the interference must be deployed in practical systems to allow the promised performance advances of 6G . Targeting these high density scenarios, we describe the Power Optimization for Low Interference and Throughput Enhancement (POLITE) paradigm for link adaptation and power allocation, which leverages available radio resources to stabilize and reduce the interference. The baseline link adaptation schemes are compared with POLITE in their performance in a 3GPP -calibrated system level simulator for industrial scenarios. As services in industrial environments require high reliability under constrained delays, we propose different delay-aware formulations in the POLITE design. In this work we provide solutions both for relaxed delay requirements and for latency critical traffic, whose delay must be minimized. In particular, in the latter case, we propose also modifications of user selection and resource allocation procedures to further improve the reliability and latency. Simulation results prove the benefits of POLITE in terms of increased throughput, fulfillment of relaxed and delay-critical requirements, with an overall reduced transmit power compared to the current baseline link adaptation schemes.

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8363
Author(s):  
Muhammad Zubair Islam ◽  
Shahzad ◽  
Rashid Ali ◽  
Amir Haider ◽  
Hyungseok Kim

With the inclusion of tactile Internet (TI) in the industrial sector, we are at the doorstep of the tactile Industrial Internet of Things (IIoT). This provides the ability for the human operator to control and manipulate remote industrial environments in real-time. The TI use cases in IIoT demand a communication network, including ultra-low latency, ultra-high reliability, availability, and security. Additionally, the lack of the tactile IIoT testbed has made it more severe to investigate and improve the quality of services (QoS) for tactile IIoT applications. In this work, we propose a virtual testbed called IoTactileSim, that offers implementation, investigation, and management for QoS provisioning in tactile IIoT services. IoTactileSim utilizes a network emulator Mininet and robotic simulator CoppeliaSim to perform real-time haptic teleoperations in virtual and physical environments. It provides the real-time monitoring of the implemented technology parametric values, network impairments (delay, packet loss), and data flow between operator (master domain) and teleoperator (slave domain). Finally, we investigate the results of two tactile IIoT environments to prove the potential of the proposed IoTactileSim testbed.


2020 ◽  
Vol 2 (1) ◽  
pp. 60
Author(s):  
Aitor Biurrun ◽  
Imanol Picallo ◽  
Hicham Klaina ◽  
Peio Lopez-Iturri ◽  
Ana V. Alejos ◽  
...  

Nowadays, the implementation of automated manufacturing processes within a wide variety of industrial environments is not understood without the Industry 4.0 concept and the context-aware possibilities given by the Industrial Internet of Things (IIoT). In this sense, Wireless Sensor Networks (WSN) play a key role due to their inherent mobility, ease of deployment and maintenance, scalability and low power consumption, among others. This work proposes the deployment and optimization of a WSN in the facilities of the Galeo Enrollables Company, located in Navarre (Spain), in order to optimize the manufacturing processes of technical curtains. For that purpose, radio propagation measurements as well as 3D Ray Launching simulations have been performed in order to characterize the wireless channel of this harsh industrial environment. Then, low cost sensors and actuators have been selected to prepare different wireless motes in order to deploy them on different machines/workstations present within the scenario. The information gathered by the motes is then transmitted to a central node, which conditions the data for input into the Enterprise Resource Planning (ERP) system.


2021 ◽  
Vol 11 (14) ◽  
pp. 6376
Author(s):  
Samir M. Umran ◽  
Songfeng Lu ◽  
Zaid Ameen Abduljabbar ◽  
Jianxin Zhu ◽  
Junjun Wu

The Industrial Internet of Things (IIoT) has become a pivotal field of development that can increase the efficiency of real-time collection, recording, analysis, and control of the entire activities of various machines, and can actively enhance quality and reduce costs. The traditional IIoT depends on centralized architectures that are vulnerable to several kinds of cyber-attacks, such as bottlenecks and single points of failure. Blockchain technology has emerged to change these architectures to a decentralized form. In modern industrial settings, blockchain technology is utilized for its ability to provide high levels of security, low computational complexity, P2P communication, transparent logs, and decentralization. The present work proposes the use of a private blockchain mechanism for an industrial application in a cement factory, which offers low power consumption, scalability, and a lightweight security scheme; and which can play an efficient role in controlling access to valuable data generated by sensors and actuators. A low-power ARM Cortex-M processor is utilized due to its efficiency in terms of processing cryptographic algorithms, and this plays an important part in improving the computational execution of the proposed architecture. In addition, instead of proof of work (PoW), our blockchain network uses proof of authentication (PoAh) as a consensus mechanism to ensure secure authentication, scalability, speed, and energy efficiency. Our experimental results show that the proposed framework achieves high levels of security, scalability and ideal performance for smart industrial environments. Moreover, we successfully realized the integration of blockchain technology with the industrial internet of things devices, which provides the blockchain technology features and efficient resistance to common cyber-security attacks.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 488 ◽  
Author(s):  
Amina Seferagić ◽  
Jeroen Famaey ◽  
Eli De Poorter ◽  
Jeroen Hoebeke

Aside from vast deployment cost reduction, Industrial Wireless Sensor and Actuator Networks (IWSAN) introduce a new level of industrial connectivity. Wireless connection of sensors and actuators in industrial environments not only enables wireless monitoring and actuation, it also enables coordination of production stages, connecting mobile robots and autonomous transport vehicles, as well as localization and tracking of assets. All these opportunities already inspired the development of many wireless technologies in an effort to fully enable Industry 4.0. However, different technologies significantly differ in performance and capabilities, none being capable of supporting all industrial use cases. When designing a network solution, one must be aware of the capabilities and the trade-offs that prospective technologies have. This paper evaluates the technologies potentially suitable for IWSAN solutions covering an entire industrial site with limited infrastructure cost and discusses their trade-offs in an effort to provide information for choosing the most suitable technology for the use case of interest. The comparative discussion presented in this paper aims to enable engineers to choose the most suitable wireless technology for their specific IWSAN deployment.


2020 ◽  
Vol 2 (1) ◽  
pp. 9
Author(s):  
Aitor Biurrun ◽  
Imanol Picallo ◽  
Hicham Klaina ◽  
Peio Lopez-Iturri ◽  
Ana V. Alejos ◽  
...  

Nowadays, the implementation of automated manufacturing processes within a wide variety of industrial environments is not understood without the Industry 4.0 concept and the context-aware possibilities given by the Industrial Internet of Things (IIoT). In this sense, Wireless Sensor Networks (WSN) play a key role due to their inherent mobility, ease of deployment and maintenance, scalability and low power consumption, among others. This work proposes the deployment and optimization of a WSN in the facilities of the Galeo Enrollables Company, located in Navarre (Spain), in order to optimize the manufacturing processes of technical curtains. For that purpose, radio propagation measurements as well as 3D Ray Launching simulations have been performed in order to characterize the wireless channel of this harsh industrial environment. Then, low cost sensors and actuators have been selected to prepare different wireless motes in order to deploy them on different machines/workstations present within the scenario. The information gathered by the motes is then transmitted to a central node, which conditions the data for input into the Enterprise Resource Planning (ERP) system.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5663
Author(s):  
Atis Elsts

TSCH (Time-Slotted Channel Hopping) and 6TiSCH (IPv6 over the TSCH mode of IEEE 802.15.4e) low-power wireless networks are becoming prominent in the industrial Internet of Things (IoT) and other areas where high reliability is needed in conjunction with energy efficiency. Due to the complexity of IoT deployments, network simulations are typically used for pre-deployment design and validation. However, it is currently difficult and time-consuming to simulate large-scale IoT networks with thousands of nodes. This paper proposes TSCH-Sim: a new discrete event simulator for IEEE 802.15.4-2015 TSCH and 6TiSCH networks. The evaluation shows that simulation results obtained with TSCH-Sim show a good match with results from other simulators that are commonly used to investigate TSCH networks. At the same time, TSCH-Sim is faster than these alternatives at least by an order of magnitude, making it more practical to carry out simulations of large networks.


Author(s):  
E. N. Lapteva ◽  
O. V. Nasarochkina

The paper deals with problem analysis due to domestic engineering transition to the Industry 4.0 technology. It presents such innovative technologies as additive manufacturing (3D-printing), Industrial Internet of Things, total digitization of manufacturing (digital description of products and processes, virtual and augmented reality). Among the main highlighted problems the authors include a lack of unification and standardization at this stage of technology development; incompleteness of both domestic and international regulatory framework; shortage of qualified personnel.


2020 ◽  
Author(s):  
Karthik Muthineni

The new industrial revolution Industry 4.0, connecting manufacturing process with digital technologies that can communicate, analyze, and use information for intelligent decision making includes Industrial Internet of Things (IIoT) to help manufactures and consumers for efficient controlling and monitoring. This work presents the design and implementation of an IIoT ecosystem for smart factories. The design is based on Siemens Simatic IoT2040, an intelligent industrial gateway that is connected to modbus sensors publishing data onto Network Platform for Internet of Everything (NETPIE). The design demonstrates the capabilities of Simatic IoT2040 by taking Python, Node-Red, and Mosca into account that works simultaneously on the device.


Author(s):  
С.Л. Добрынин ◽  
В.Л. Бурковский

Произведен обзор технологий в рамках концепции четвертой промышленной революции, рассмотрены примеры реализации новых моделей управления технологическими процессами на базе промышленного интернета вещей. Описано техническое устройство основных подсистем системы мониторинга и контроля, служащей для повышения осведомленности о фактическом состоянии производственных ресурсов в особенности станков и аддитивного оборудования в режиме реального времени. Архитектура предлагаемой системы состоит из устройства сбора данных (УСД), реализующего быстрый и эффективный сбор данных от станков и шлюза, передающего ликвидную часть информации в облачное хранилище для дальнейшей обработки и анализа. Передача данных выполняется на двух уровнях: локально в цехе, с использованием беспроводной сенсорной сети (WSN) на базе стека протоколов ZigBee от устройства сбора данных к шлюзам и от шлюзов в облако с использованием интернет-протоколов. Разработан алгоритм инициализации протоколов связи между устройством сбора данных и шлюзом, а также алгоритм выявления неисправностей в сети. Расчет фактического времени обработки станочных подсистем позволяет более эффективно планировать профилактическое обслуживание вместо того, чтобы выполнять задачи обслуживания в фиксированные интервалы без учета времени использования оборудования We carried out a review of technologies within the framework of the concept of the fourth industrial revolution; we considered examples of the implementation of new models of process control based on the industrial Internet of things. We described the technical structure of the main subsystems of the monitoring and control system to increase awareness of the actual state of production resources in particular machine tools and additive equipment in real time. The architecture of the proposed system consists of a data acquisition device (DAD) that implements fast and efficient data collection from machines and a gateway that transfers the liquid part of information to the cloud storage for further processing and analysis. We carried out the data transmission at two levels, locally in the workshop, using a wireless sensor network (WSN) based on ZigBee protocol stack from the data acquisition device to the gateways and from the gateways to the cloud using Internet protocols. An algorithm was developed for initializing communication protocols between a data acquisition device and a gateway, as well as an algorithm for detecting network malfunctions. Calculating the actual machining time of machine subsystems allows us to more efficiently scheduling preventive maintenance rather than performing maintenance tasks at fixed intervals without considering equipment usage


Sign in / Sign up

Export Citation Format

Share Document