scholarly journals Ex Vivo Culture Models of Hidradenitis Suppurativa for Defining Molecular Pathogenesis and Treatment Efficacy of Novel Drugs

Author(s):  
Kayla Goliwas ◽  
Mahendra P Kashyap ◽  
Jasim Khan ◽  
Rajesh Sinha ◽  
Zhiping Weng ◽  
...  

Abstract Hidradenitis suppurativa (HS) is a complex inflammatory and debilitating skin disease for which no effective treatment is available currently. This is partly because of the lack of adequate human or animal models to define the pathobiology of the disease. Here, we describe the development of air-liquid (A-L) interface, liquid-submersion (L-S) and bioreactor (Bio) ex vivo skin culture models. All three ex vivo platforms were effective for culturing skin samples up to 14 days. Tissue architecture and integrity remained intact for at least 3 days for healthy skin and 14 days for HS skin. Up to day-3, no significant differences were observed in % early apoptotic cells among all three platforms. However, an increase was observed in late apoptotic/necrotic cells in HS skin at day-3 in A-L and Bio culture. These cultures efficiently support the growth of various cells populations, including keratinocytes and immune cells. Profiling inflammatory gene signatures in HS skin from these ex vivo cultures showed dynamic expression changes at day-3 and day-14. All three culture platforms are necessary to represent the inflammatory gene status of HS skin at day-0, suggesting that not all gene clusters are identically altered in each culture method. Similarly, cytokine/chemokine profiling of the supernatants from vehicle- and drug-treated ex vivo HS cultures again showed better prediction of drug efficacy against HS. Overall, development of these three culture systems collectively provides a powerful tool to uncover the pathobiology of HS progression and screen various drugs against HS.

2021 ◽  
Author(s):  
Kayla Goliwas ◽  
Mahendra P Kashyap ◽  
Jasim Khan ◽  
Rajesh Sinha ◽  
Zhiping Weng ◽  
...  

Hidradenitis suppurativa (HS) is a complex inflammatory and debilitating skin disease for which no effective treatment is available. This is partly because of the unavailability of suitable human or animal models with which exact pathobiology of the disease can be defined. Here, we describe the development of air-liquid (A-L) interface, liquid-liquid/liquid-submersion (L-S) and bioreactor (Bio) ex vivo skin culture models. All three ex vivo platforms were effective for culturing skin samples up to day-14, with the tissue architecture and integrity remaining intact for at least 3 days for healthy skin while for 14 days for HS skin. Up to day-3, no significant differences were observed in % early apoptotic cells among all three platforms. However, an increase was observed in late apoptotic/necrotic cells in HS skin at day-3 in A-L and Bio culture of HS skin. These cultures efficiently support the growth of various cells populations, including keratinocytes and immune cells. Profiling of the inflammatory genes using HS skin from these ex vivo cultures showed dynamic expression changes at day-3 and day-14. All of these cultures are necessary to represent the inflammatory gene status of HS skin at day-0 suggesting that not all gene clusters are identically altered in each culture method. Similarly, cytokine/chemokine profiling of the supernatant from vehicle- and drug-treated ex vivo HS cultures again showed better prediction of drug efficacy against HS. Overall, development of these three systems collectively provide a powerful tool to uncover the pathobiology of HS progression and screen various drugs against HS.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2527
Author(s):  
Imke Demers ◽  
Johan Donkers ◽  
Bernd Kremer ◽  
Ernst Jan Speel

Head and neck squamous cell carcinoma (HNSCC) is characterized by a poor 5 year survival and varying response rates to both standard-of-care and new treatments. Despite advances in medicine and treatment methods, mortality rates have hardly decreased in recent decades. Reliable patient-derived tumor models offer the chance to predict therapy response in a personalized setting, thereby improving treatment efficacy by identifying the most appropriate treatment regimen for each patient. Furthermore, ex vivo tumor models enable testing of novel therapies before introduction in clinical practice. A literature search was performed to identify relevant literature describing three-dimensional ex vivo culture models of HNSCC to examine sensitivity to chemotherapy, radiotherapy, immunotherapy and targeted therapy. We provide a comprehensive overview of the currently used three-dimensional ex vivo culture models for HNSCC with their advantages and limitations, including culture success percentage and comparison to the original tumor. Furthermore, we evaluate the potential of these models to predict patient therapy response.


2014 ◽  
Vol 3 ◽  
pp. e142 ◽  
Author(s):  
Sofia Karkampouna ◽  
Boudewijn PT Kruithof ◽  
Peter Kloen ◽  
Miryam C Obdeijn ◽  
Annelies MA van der Laan ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3277-3277 ◽  
Author(s):  
Yosuke Minami ◽  
Miho Minami ◽  
Yachiyo Kuwatsuka ◽  
Ryohei Tanizaki ◽  
Yuka Nomura ◽  
...  

Abstract Abstract 3277 Poster Board III-1 Recent studies suggest that leukemia stem cells (LSCs) are responsible for relapse of leukemia following conventional or targeted agents and that eradication of LSCs might be necessary to cure the disease. Aberrant activation of mTOR signaling has also been reported to be involved in LSCs. In order to examine mechanisms of drug resistance in Ph-positive (Ph+) LSCs and to seek strategies to overcome the resistance, we've previously established in vivo-murine and ex vivo-culture models using murine hematopoietic pluripotent progenitors transduced with BCR-ABL (Minami, et al., Proc Natl Acad Sci USA, 2008). Furthermore, Ph+ leukemia (including T315I-, F311I-mutated CML-BC, or Y253H-mutated Ph-ALL) patient cells were serially xenotransplanted into immunodeficient NOD/SCID/IL2rγnull (NOG) mice. Engrafted bone marrow and spleen cells were almost identical to the original leukemia cells as to phenotypes including karyotypes and distribution of primitive populations. Spleen cells derived from leukemic NOG mice were co-cultured with S17 stromal cells and treated with imatinib and the mTOR inhibitor, everolimus (RAD001, Novartis Pharmaceuticals). While quiescent (Hoechst-33342low/Pyronin-Ylow) CD34+ cells were insensitive to imatinib in spite of BCR-ABL- and CrkL-dephosphorylation, substantial cell death including CD34+ population was induced with nM level of everolimus. In imatinib-resistant Ph+ leukemia cell lines harboring T315I-mutation (Baf3p210/T315I and TCC-Y/T315I), everolimus induced cell death with low IC50 values in PI-exclusion assays. We are also investigating detailed biomarkers in the cell death (such as phosphorylation of 4E-BP1 or p70 S6K) and effects of theses drugs in the leukemic NOG mice systems. These results imply that treatment with everolimus can overcome the resistance to imatinib in Ph+ LSCs or T315I-mutated cells. Disclosures: Kiyoi: Kyowa Hakko Kirin: Consultancy. Naoe:Kyowa Hakko Kirin, Wyeth and Chugai: Research Funding.


2011 ◽  
Vol 337 (1) ◽  
pp. 42-49 ◽  
Author(s):  
Daisuke Takahashi ◽  
Hiroshi Azuma ◽  
Hiromi Sakai ◽  
Keitaro Sou ◽  
Daiko Wakita ◽  
...  

Dermatology ◽  
2021 ◽  
pp. 1-8
Author(s):  
Xiaoxiao Hou ◽  
Amir M. Hossini ◽  
Georgios Nikolakis ◽  
Ottfried Balthasar ◽  
Andreas Kurtz ◽  
...  

<b><i>Background:</i></b> Hidradenitis suppurativa/acne inversa (HS) is a chronic, recurrent inflammatory skin disease. Its pivotal pathogenetic event is believed to be the occlusion of the hair follicle generating a perifollicular lympho-histiocytic inflammation. However, knowledge of the exact HS pathogenesis requires further research. <b><i>Objective:</i></b> To develop a human HS model applicable in preclinical research which could help to understand the pathophysiology of HS and to determine the action of therapeutic candidates. <b><i>Methods:</i></b> The 3D-SeboSkin technology was applied to maintain explants of involved and uninvolved skin of HS patients ex vivo for 3 days. Detection of differential expression of previously detected HS biomarkers was performed by immunohistochemistry in a group of female patients (<i>n</i> = 9, mean age 37.2 ± 8.4 years). <b><i>Results:</i></b> The application of the 3D-SeboSkin model preserved the structural integrity of lesional and perilesional HS skin ex vivo, as previously described for healthy skin. Moreover, the HS 3D-SeboSkin setting maintained the differential expression and pattern of several HS biomarkers (S100A9, KRT16, SERPINB3) in epidermal and dermal tissue and the appendages. <b><i>Conclusion:</i></b> We have validated HS 3D-SeboSkin as a reproducible, human model, which is appropriate for preclinical lesional and perilesional HS skin studies ex vivo.


Biology ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 748
Author(s):  
Elisa Wirthgen ◽  
Melanie Hornschuh ◽  
Ida Maria Wrobel ◽  
Christian Manteuffel ◽  
Jan Däbritz

Ex vivo culture conditions during the manufacturing process impact the therapeutic effect of cell-based products. Mimicking blood flow during ex vivo culture of monocytes has beneficial effects by preserving their migratory ability. However, the effects of shear flow on the inflammatory response have not been studied so far. Hence, the present study investigates the effects of shear flow on both blood-derived naïve and activated monocytes. The activation of monocytes was experimentally induced by granulocyte-macrophage colony-stimulating factor (GM-CSF), which acts as a pro-survival and growth factor on monocytes with a potential role in inflammation. Monocytes were cultured under dynamic (=shear flow) or static conditions while preventing monocytes' adherence by using cell-repellent surfaces to avoid adhesion-induced differentiation. After cultivation (40 h), cell size, viability, and cytokine secretion were evaluated, and the cells were further applied to functional tests on their migratory capacity, adherence, and metabolic activity. Our results demonstrate that the application of shear flow resulted in a decreased pro-inflammatory signaling concurrent with increased secretion of the anti-inflammatory cytokine IL-10 and increased migratory capacity. These features may improve the efficacy of monocyte-based therapeutic products as both the unwanted inflammatory signaling in blood circulation and the loss of migratory ability will be prevented.


2011 ◽  
Vol 6 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Andrew B.J. Prowse ◽  
Fenny Chong ◽  
Peter P. Gray ◽  
Trent P. Munro

Sign in / Sign up

Export Citation Format

Share Document