scholarly journals Sexually dimorphic mechanosensory neurons regulate copulation duration and persistence in male Drosophila

Author(s):  
Shreyas Jois ◽  
Yick-Bun Chan ◽  
Maria Paz Fernandez ◽  
Narsimha Pujari ◽  
Lea Joline Janz ◽  
...  

Abstract Peripheral sensory neurons are the gateway to the environment across species. In Drosophila, olfactory and gustatory senses are required to initiate courtship, as well as for the escalation of courtship patterns that lead to copulation. To be successful, copulation must last long enough to ensure the transfer of sperm and seminal fluid that ultimately leads to fertilization. The fly genitalia contain sex-specific bristle hairs innervated by mechanosensory neurons. To date, the role of the sensory information collected by these peripheral neurons in male copulatory behavior is unknown. Here, we employed genetic manipulations that allow driving gene expression in the male genitalia as a tool to uncover the role of these genitalia specific neurons in copulation. We found that the sensory information received by the mechanosensory neurons (MSNs) at the male genitalia plays a key role in copulation duration. We confirmed that these MSNs are cholinergic and co-express both fru and dsx. Moreover, our results show that the function of these fru/dsx cholinergic MSNs is required for copulation persistence, which ensures copulation is undisrupted in the presence of environmental stress before sperm transfer is complete.

2019 ◽  
Author(s):  
Myungin Baek ◽  
Vilas Menon ◽  
Thomas M. Jessell ◽  
Adam W. Hantman ◽  
Jeremy S. Dasen

AbstractCoordinated motor behaviors depend on feedback communication between peripheral sensory systems and central circuits in the brain and spinal cord. Relay of muscle and tendon-derived sensory information to the CNS is facilitated by functionally and anatomically diverse groups of spinocerebellar tract neurons (SCTNs), but the molecular logic by which SCTN diversity and connectivity is achieved is poorly understood. We used single cell RNA sequencing and genetic manipulations to define the mechanisms governing the molecular profile and organization of SCTN subtypes. We found that SCTNs relaying proprioceptive sensory information from limb and axial muscles are generated through segmentally-restricted actions of specific Hox genes. Loss of Hox function disrupts SCTN subtype-specific transcriptional programs, leading to defects in the connections between proprioceptive sensory neurons, SCTNs, and the cerebellum. These results indicate that Hox-dependent genetic programs play essential roles in the assembly of the neural circuits required for proprioception.


2019 ◽  
Author(s):  
Alexia Bourgeois ◽  
Carole Guedj ◽  
Emmanuel Carrera ◽  
Patrik Vuilleumier

Selective attention is a fundamental cognitive function that guides behavior by selecting and prioritizing salient or relevant sensory information of our environment. Despite early evidence and theoretical proposal pointing to an implication of thalamic control in attention, most studies in the past two decades focused on cortical substrates, largely ignoring the contribution of subcortical regions as well as cortico-subcortical interactions. Here, we suggest a key role of the pulvinar in the selection of salient and relevant information via its involvement in priority maps computation. Prioritization may be achieved through a pulvinar- mediated generation of alpha oscillations, which may then modulate neuronal gain in thalamo-cortical circuits. Such mechanism might orchestrate the synchrony of cortico-cortical interaction, by rendering neural communication more effective, precise and selective. We propose that this theoretical framework will support a timely shift from the prevailing cortico- centric view of cognition to a more integrative perspective of thalamic contributions to attention and executive control processes.


2020 ◽  
Vol 26 ◽  
Author(s):  
Cristian Muresanu ◽  
Siva G. Somasundaram ◽  
Sergey V. Vissarionov ◽  
Liliya V. Gavryushova ◽  
Vladimir N. Nikolenko ◽  
...  

Background: From the evidence of failed injection-based growth factor therapies, it has been proposed that a naturally triggered uninterrupted blood circulation of the growth factors would be superior. Objective: We seek to stimulate discussions and more research about the possibility of using the already available growth factors found in the prostate gland and endometrium by starting a novel educable physiology, known as biological transformations controlled by the mind. Methods: We summarized the stretch-gated ion channel mechanism of the cell membrane, and offer several practical methods that can be applied by anyone, in order to stimulate and enhance the blood circulation of the growth factors from the seminal fluid to sites throughout the body. This details the practical application of our earlier published studies about biological transformations. Results: A previously reported single-patient case study has been extended, adding more from his personal experiences continually improving this novel physiological training and extending the ideas from our earlier findings in detail. Conclusion: The biological transformation findings demonstrate the need additional research to establish the benefits of these natural therapies to repair and rejuvenate tissues affected by various chronic diseases or aging processes.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Oleg Shuvalov ◽  
Alyona Kizenko ◽  
Alexey Petukhov ◽  
Olga Fedorova ◽  
Alexandra Daks ◽  
...  

AbstractCancer-testicular Antigens (CTAs) belong to a group of proteins that under normal conditions are strictly expressed in a male’s reproductive tissues. However, upon malignisation, they are frequently re-expressed in neoplastic tissues of various origin. A number of studies have shown that different CTAs affect growth, migration and invasion of tumor cells and favor cancer development and metastasis. Two members of the CTA group, Semenogelin 1 and 2 (SEMG1 and SEMG2, or SEMGs) represent the major component of human seminal fluid. They regulate the motility and capacitation of sperm. They are often re-expressed in different malignancies including breast cancer. However, there is almost no information about the functional properties of SEMGs in cancer cells. In this review, we highlight the role of SEMGs in the reproductive system and also summarize the data on their expression and functions in malignant cells of various origins.


Author(s):  
Maria Cristina Budani ◽  
Gian Mario Tiboni

Nitric oxide (NO) is formed during the oxidation of L-arginine to L-citrulline by the action of multiple isoenzymes of NO synthase (NOS): neuronal NOS (nNOS), endotelial NOS (eNOS), and inducible NOS (iNOS). NO plays a relevant role in the vascular endothelium, in central and peripheral neurons, and in immunity and inflammatory systems. In addition, several authors showed a consistent contribution of NO to different aspects of the reproductive physiology. The aim of the present review is to analyse the published data on the role of NO within the ovary. It has been demonstrated that the multiple isoenzymes of NOS are expressed and localized in the ovary of different species. More to the point, a consistent role was ascribed to NO in the processes of steroidogenesis, folliculogenesis, and oocyte meiotic maturation in in vitro and in vivo studies using animal models. Unfortunately, there are few nitric oxide data for humans; there are preliminary data on the implication of nitric oxide for oocyte/embryo quality and in-vitro fertilization/embryo transfer (IVF/ET) parameters. NO plays a remarkable role in the ovary, but more investigation is needed, in particular in the context of human ovarian physiology.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Mingzhao Su ◽  
Junhua Liu ◽  
Baocong Yu ◽  
Kaixing Zhou ◽  
Congli Sun ◽  
...  

AbstractThe rodent whisker-barrel cortex system has been established as an ideal model for studying sensory information integration. The barrel cortex consists of barrel and septa columns that receive information input from the lemniscal and paralemniscal pathways, respectively. Layer 5a is involved in both barrel and septa circuits and play a key role in information integration. However, the role of layer 5a in the development of the barrel cortex remains unclear. Previously, we found that calretinin is dynamically expressed in layer 5a. In this study, we analyzed calretinin KO mice and found that the dendritic complexity and length of layer 5a pyramidal neurons were significantly decreased after calretinin ablation. The membrane excitability and excitatory synaptic transmission of layer 5a neurons were increased. Consequently, the organization of the barrels was impaired. Moreover, layer 4 spiny stellate cells were not able to properly gather, leading to abnormal formation of barrel walls as the ratio of barrel/septum size obviously decreased. Calretinin KO mice exhibited deficits in exploratory and whisker-associated tactile behaviors as well as social novelty preference. Our study expands our knowledge of layer 5a pyramidal neurons in the formation of barrel walls and deepens the understanding of the development of the whisker-barrel cortex system.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Atsushi Hirao

In avian mating systems, male domestic fowls are polygamous and mate with a number of selected members of the opposite sex. The factors that influence mating preference are considered to be visual cues. However, several studies have indicated that chemosensory cues also affect socio-sexual behavior, including mate choice and individual recognition. The female uropygial gland appears to provide odor for mate choice, as uropygial gland secretions are specific to individual body odor. Chicken olfactory bulbs possess efferent projections to the nucleus taeniae that are involved in copulatory behavior. From various reports, it appears that the uropygial gland has the potential to act as the source of social odor cues that dictate mate choice. In this review, evidence for the possible role of the uropygial gland on mate choice in domestic chickens is presented. However, it remains unclear whether a relationship exists between the uropygial gland and major histocompatibility complex-dependent mate choice.


2017 ◽  
Vol 29 (7) ◽  
pp. 1319 ◽  
Author(s):  
Olga Bondarenko ◽  
Borys Dzyuba ◽  
Marek Rodina ◽  
Jacky Cosson

The role of Ca2+ in sturgeon sperm maturation and motility was investigated. Sperm from mature male sterlets (Acipenser ruthenus) were collected from the Wolffian duct and testis 24 h after hormone induction. Testicular spermatozoa (TS) were incubated in Wolffian duct seminal fluid (WDSF) for 5 min at 20°C and were designated ‘TS after IVM’ (TSM). Sperm motility was activated in media with different ion compositions, with motility parameters analysed from standard video microscopy records. To investigate the role of calcium transport in the IVM process, IVM was performed (5 min at 20°C) in the presence of 2 mM EGTA, 100 µM Verapamil or 100 µM Tetracaine. No motility was observed in the case of TS (10 mM Tris, 25 mM NaCl, 50 mM Sucr with or without the addition of 2 mM EGTA). Both incubation of TS in WDSF and supplementation of the activation medium with Ca2+ led to sperm motility. The minimal Ca2+ concentration required for motility activation of Wolffian duct spermatozoa, TS and TSM was determined (1–2 nM for Wolffian duct spermatozoa and TSM; approximately 0.6 mM for TS). Motility was obtained after the addition of verapamil to the incubation medium during IVM, whereas the addition of EGTA completely suppressed motility, implying Ca2+ involvement in sturgeon sperm maturation. Further studies into the roles of Ca2+ transport in sturgeon sperm maturation and motility are required.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Sarah Falk ◽  
Maria Uldall ◽  
Anne-Marie Heegaard

Cancer-induced bone pain severely compromises the quality of life of many patients suffering from bone metastasis, as current therapies leave some patients with inadequate pain relief. The recent development of specific animal models has increased the understanding of the molecular and cellular mechanisms underlying cancer-induced bone pain including the involvement of ATP and the purinergic receptors in the progression of the pain state. In nociception, ATP acts as an extracellular messenger to transmit sensory information both at the peripheral site of tissue damage and in the spinal cord. Several of the purinergic receptors have been shown to be important for the development and maintenance of neuropathic and inflammatory pain, and studies have demonstrated the importance of both peripheral and central mechanisms. We here provide an overview of the current literature on the role of purinergic receptors in cancer-induced bone pain with emphasis on some of the difficulties related to studying this complex pain state.


Sign in / Sign up

Export Citation Format

Share Document