scholarly journals Complex Drivers of Riparian Soil Oxygen Variability Revealed Using Self-Organizing Maps

Author(s):  
Brittany Victoria Lancellotti ◽  
Kristen Underwood ◽  
Julia Perdrial ◽  
Carol Adair ◽  
Andrew Schroth ◽  
...  

Abstract Oxygen (O2) is a key regulator of soil reduction-oxidation processes and therefore modulates biogeochemical cycles. The difficulties associated with accurately characterizing soil O2 variability have prompted the use of soil moisture as a proxy for soil O2, based on the low solubility of O2 in water. Due to seasonal shifts in soil O2 depletion mechanisms, the use of soil moisture alone as a proxy measurement could result in inaccurate O2 estimations. For example, soil O2 may remain high during cool months when soil respiration rates are low. We analyzed high-frequency sensor data (e.g., soil moisture, temperature, CO2, O2) with a machine learning technique, the Self-Organizing Map, to pinpoint suites of soil conditions that are associated with contrasting O2 regimes. At two low-lying riparian sites in contrasting land use and topographic settings of northern Vermont, we found that soil O2 levels varied seasonally, and with soil moisture. For example, forty-seven percent of low O2 levels were associated with cool and wet soil conditions, whereas 32% were associated with warm and dry conditions. Contrastingly, the majority (62%) of high O2 conditions occurred under warm and dry conditions. High soil moisture levels did not always lead to low O2, however, as 38% of high O2 values occurred under cool and wet conditions. Our results highlight challenges associated with predicting soil O2 solely based on soil moisture, as variable combinations of soil and site-specific hydrologic conditions can complicate the relationship between soil water content and O2. This indicates that process-based ecosystem and denitrification models that rely solely on soil moisture to estimate O2 availability will, in some cases, need to incorporate other site and climate-specific drivers to accurately predict soil O2.

Medicina ◽  
2021 ◽  
Vol 57 (3) ◽  
pp. 235
Author(s):  
Diego Galvan ◽  
Luciane Effting ◽  
Hágata Cremasco ◽  
Carlos Adam Conte-Junior

Background and objective: In the current pandemic scenario, data mining tools are fundamental to evaluate the measures adopted to contain the spread of COVID-19. In this study, unsupervised neural networks of the Self-Organizing Maps (SOM) type were used to assess the spatial and temporal spread of COVID-19 in Brazil, according to the number of cases and deaths in regions, states, and cities. Materials and methods: The SOM applied in this context does not evaluate which measures applied have helped contain the spread of the disease, but these datasets represent the repercussions of the country’s measures, which were implemented to contain the virus’ spread. Results: This approach demonstrated that the spread of the disease in Brazil does not have a standard behavior, changing according to the region, state, or city. The analyses showed that cities and states in the north and northeast regions of the country were the most affected by the disease, with the highest number of cases and deaths registered per 100,000 inhabitants. Conclusions: The SOM clustering was able to spatially group cities, states, and regions according to their coronavirus cases, with similar behavior. Thus, it is possible to benefit from the use of similar strategies to deal with the virus’ spread in these cities, states, and regions.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Adeoluwa Akande ◽  
Ana Cristina Costa ◽  
Jorge Mateu ◽  
Roberto Henriques

The explosion of data in the information age has provided an opportunity to explore the possibility of characterizing the climate patterns using data mining techniques. Nigeria has a unique tropical climate with two precipitation regimes: low precipitation in the north leading to aridity and desertification and high precipitation in parts of the southwest and southeast leading to large scale flooding. In this research, four indices have been used to characterize the intensity, frequency, and amount of rainfall over Nigeria. A type of Artificial Neural Network called the self-organizing map has been used to reduce the multiplicity of dimensions and produce four unique zones characterizing extreme precipitation conditions in Nigeria. This approach allowed for the assessment of spatial and temporal patterns in extreme precipitation in the last three decades. Precipitation properties in each cluster are discussed. The cluster closest to the Atlantic has high values of precipitation intensity, frequency, and duration, whereas the cluster closest to the Sahara Desert has low values. A significant increasing trend has been observed in the frequency of rainy days at the center of the northern region of Nigeria.


2021 ◽  
Vol 11 (4) ◽  
pp. 1933
Author(s):  
Hiroomi Hikawa ◽  
Yuta Ichikawa ◽  
Hidetaka Ito ◽  
Yutaka Maeda

In this paper, a real-time dynamic hand gesture recognition system with gesture spotting function is proposed. In the proposed system, input video frames are converted to feature vectors, and they are used to form a posture sequence vector that represents the input gesture. Then, gesture identification and gesture spotting are carried out in the self-organizing map (SOM)-Hebb classifier. The gesture spotting function detects the end of the gesture by using the vector distance between the posture sequence vector and the winner neuron’s weight vector. The proposed gesture recognition method was tested by simulation and real-time gesture recognition experiment. Results revealed that the system could recognize nine types of gesture with an accuracy of 96.6%, and it successfully outputted the recognition result at the end of gesture using the spotting result.


1951 ◽  
Vol 4 (3) ◽  
pp. 211
Author(s):  
GC Wade

The disease known as white root rot affects raspberries, and to a less extent loganberries, in Victoria. The causal organism is a white, sterile fungus that has not been identified. The disease is favoured by dry soil conditions and high soil temperatures. It spreads externally to the host by means of undifferentiated rhizomorphs; and requires a food base for the establishment of infection. The spread of rhizomorphs through the soil is hindered by high soil moisture content and consequent poor aeration of the soil.


Author(s):  
Macario O. Cordel ◽  
Arnulfo P. Azcarraga

Several time-critical problems relying on large amount of data, e.g., business trends, disaster response and disease outbreak, require cost-effective, timely and accurate data summary and visualization, in order to come up with an efficient and effective decision. Self-organizing map (SOM) is a very effective data clustering and visualization tool as it provides intuitive display of data in lower-dimensional space. However, with [Formula: see text] complexity, SOM becomes inappropriate for large datasets. In this paper, we propose a force-directed visualization method that emulates SOMs capability to display the data clusters with [Formula: see text] complexity. The main idea is to perform a force-directed fine-tuning of the 2D representation of data. To demonstrate the efficiency and the vast potential of the proposed method as a fast visualization tool, the methodology is used to do a 2D-projection of the MNIST handwritten digits dataset.


2019 ◽  
Vol 1 (1) ◽  
pp. 194-202
Author(s):  
Adrian Costea

Abstract This paper assesses the financial performance of Romania’s non-banking financial institutions (NFIs) using a neural network training algorithm proposed by Kohonen, namely the Self-Organizing Maps algorithm. The algorithm takes the financial dataset and positiones each observation into a self-organizing map (a two-dimensional map) which can be latter used to visualize the trajectories of an individual NFI and explain it based on different performance dimensions, such as capital adequacy, assets’ quality and profitability. Further, we use the map as an early-warning system that would accurately forecast the NFIs future performance (whether they would stay or be eliminated from the NFI’s Special Register three quarters into the future). The results are promising: the model is able to correctly predict NFIs’ performance movements. Finally, we compared the results of our SOM-based model with those obtained by applying a multivariate logit-based model. The SOM model performed worse in discriminating the NFIs’ performance: the performance classes were not clearly defined and the model lacked the interpretability of the results. In the contrary, the multivariate logit coefficients have nice interpretability and an individual default probability estimate is obtained for each new observation. However, we can benefit from the results of both techniques: the visualization capabilities of the SOM model and the interpretability of multivariate logit-based model.


2009 ◽  
Vol 18 (04) ◽  
pp. 603-611 ◽  
Author(s):  
CHIH-FONG TSAI ◽  
YUAH-CHIAO LIN ◽  
YI-TING WANG

Stock trading activities are always very popular in many countries. Generally, investors with various backgrounds have different preferences over the stocks they trade. In literature, a number of studies examine the institutions' holding preferences for certain stock characteristics when choosing the security portfolio. However, very few studies investigate the stock trading preferences of individual investors. In this paper, we focus on two factors which affect the portfolio choices of investors, which are stock characteristics and investor features. In particular, a self-organizing map (SOM) is used to group a certain number of clusters based on a chosen dataset. Then, the decision tree model is used to extract useful rules from the clusters which contain the most trading records in the sample. We find that if the investors are females, less wealthy, and make stock trades with lower frequencies, they will be more careful and conservative. On the other hand, if the investors are males, having a high level of wealth, and make stock trades very often, they tend to choose stocks with high EPS, high market-to-book, and high prices.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2980 ◽  
Author(s):  
Bizhong Xia ◽  
Yadi Yang ◽  
Jie Zhou ◽  
Guanghao Chen ◽  
Yifan Liu ◽  
...  

Battery sorting is an important process in the production of lithium battery module and battery pack for electric vehicles (EVs). Accurate battery sorting can ensure good consistency of batteries for grouping. This study investigates the mechanism of inconsistency of battery packs and process of battery sorting on the lithium-ion battery module production line. Combined with the static and dynamic characteristics of lithium-ion batteries, the battery parameters on the production line that can be used as a sorting basis are analyzed, and the parameters of battery mass, volume, resistance, voltage, charge/discharge capacity and impedance characteristics are measured. The data of batteries are processed by the principal component analysis (PCA) method in statistics, and after analysis, the parameters of batteries are obtained. Principal components are used as sorting variables, and the self-organizing map (SOM) neural network is carried out to cluster the batteries. Group experiments are carried out on the separated batteries, and state of charge (SOC) consistency of the batteries is achieved to verify that the sorting algorithm and sorting result is accurate.


Sign in / Sign up

Export Citation Format

Share Document