scholarly journals The Novel Curcumin Derivative 1g Induces Mitochondrial and ER-Stress-Dependent Apoptosis in Colon Cancer Cells by Induction of ROS Production

Author(s):  
Hao Wang ◽  
Jia-Lin Sun ◽  
Ying-Xing Xu ◽  
Zhong-Guo Sui

Abstract Background: A novel curcumin (Cur) derivative 1g can inhibit the proliferation of colon cancer in vitro and in vivo. The purpose of this study was to explore the role of 1g in inducing apoptosis of colon cancer cells, especially mitochondrial apoptosis and endoplasmic reticulum (ER)-stress caused by reactive oxygen species (ROS).Methods: Bioinformatics was used to analyze differentially expressed mrnas. Gene expression was measured by using qRT-PCR and protein expression was measured by using western blotting. Cell apoptosis, cycle, mitochondrial membrane potential and ROS were analyzed by flow cytometry. Experiments on transplanted tumors in animals.Results: The mechanism of this effect was a change in mitochondrial membrane potential caused by 1g that increased its pro-apoptotic activity. In addition, 1g produced ROS, induced G1 checkpoint blockade, and enhanced ER-stress in colon cancer cells. On the contrary, pretreatment with the ROS scavenging agent N-acetyl-l-cysteine (NAC) inhibited the mitochondrial dysfunction caused by 1g and reversed ER-stress, cell cycle stagnation, and apoptosis. Additionally, pretreatment with the p-PERK inhibitor GSK2606414 significantly reduced ER-stress and reversed the apoptosis induced by colon cancer cells.Conclusions: This study not only found that 1g inherits the safety of Cur and has a more inhibitory effect on colon cancer cells than Cur, but also revealed that excessive production of ROS is one of the mechanisms of anti-tumor action.

Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5054
Author(s):  
Hydari Masuma Begum ◽  
Chelsea Mariano ◽  
Hao Zhou ◽  
Keyue Shen

Epithelial cancer cells often have unusually higher mitochondrial membrane potential (ΔΨm) than their normal counterparts, which has been associated with increased invasiveness in vitro and higher metastatic potential in vivo. However, the mechanisms by which ΔΨm in cancer cells is regulated in tumor microenvironment (TME) remain unclear. In this study, we used an in vitro micropatterning platform to recapitulate biophysical confinement cues in the TME and investigated the mechanisms by which these regulate cancer cell ΔΨm. We found that micropatterning resulted in a spatial distribution of ΔΨm, which correlated with the level of E-cadherin mediated intercellular adhesion. There was a stark contrast in the spatial distribution of ΔΨm in the micropattern of E-cadherin-negative breast cancer cells (MDA-MB-231) compared to that of the high E-cadherin expressing (MCF-7) cancer cells. Disruption and knockout of E-cadherin adhesions rescued the low ΔΨm found at the center of MCF-7 micropatterns with high E-cadherin expression, while E-cadherin overexpression in MDA-MB-231 and MCF-7 cells lowered their ΔΨm at the micropattern center. These results show that E-cadherin plays an important role in regulating the ΔΨm of cancer cells in the context of biophysical cues in TME.


2021 ◽  
Vol 11 ◽  
Author(s):  
Hao Wang ◽  
Yingxing Xu ◽  
Jialin Sun ◽  
Zhongguo Sui

Reactive oxygen species (ROS) play an important role in cellular metabolism. Many chemotherapeutic drugs are known to promote apoptosis through the production of ROS. In the present study, the novel curcumin derivative, 1g, was found to inhibit tumor growth in colon cancer cells both in vitro and in vivo. Bioinformatics was used to analyze the differentially expressed mRNAs. The mechanism of this effect was a change in mitochondrial membrane potential caused by 1g that increased its pro-apoptotic activity. In addition, 1g produced ROS, induced G1 checkpoint blockade, and enhanced endoplasmic reticulum (ER)-stress in colon cancer cells. Conversely, pretreatment with the ROS scavenging agent N-acetyl-l-cysteine (NAC) inhibited the mitochondrial dysfunction caused by 1g and reversed ER-stress, cell cycle stagnation, and apoptosis. Additionally, pretreatment with the p-PERK inhibitor GSK2606414 significantly reduced ER-stress and reversed the apoptosis induced by colon cancer cells. In summary, the production of ROS plays an important role in the destruction of colon cancer cells by 1g and demonstrates that targeted strategies based on ROS represent a promising approach to inhibit colon cancer proliferation. These findings reveal that the novel curcumin derivative 1g represents a potential candidate therapeutics for the treatment of colon cancer cells, via apoptosis caused by mitochondrial dysfunction and endoplasmic reticulum stress.


Author(s):  
Mayson H. Alkhatib ◽  
Dalal Al-Saedi ◽  
Wadiah S. Backer

The combination of anticancer drugs in nanoparticles has great potential as a promising strategy to maximize efficacies by eradicating resistant, reduce the dosage of the drug and minimize toxicities on the normal cells. Gemcitabine (GEM), a nucleoside analogue, and atorvastatin (ATV), a cholesterol lowering agent, have shown anticancer effect with some limitations. The objective of this in vitro study was to evaluate the antitumor activity of the combination therapy of GEM and ATVencapsulated in a microemulsion (ME) formulation in the HCT116 colon cancer cells. The cytotoxicity and efficacy of the formulation were assessed by the 3- (4,5dimethylthiazole-2-yl)-2,5-diphyneltetrazolium bromide (MTT) assay. The mechanism of cell death was examined by observing the morphological changes of treated cells under light microscope, identifying apoptosis by using the ApopNexin apoptosis detection kit, and viewing the morphological changes in the chromatin structure stained with 4′,6-diamidino-2-phenylindole (DAPI) under the inverted fluorescence microscope. It has been found that reducing the concentration of GEM loaded on ME (GEM-ME) from 5μM to 1.67μM by combining it with 3.33μM of ATV in a ME formulation (GEM/2ATV-ME) has preserved the strong cytotoxicity of GEM-ME against HCT116 cells. The current study proved that formulating GEM with ATV in ME has improved the therapeutic potential of GEM and ATV as anticancer drugs.


Sign in / Sign up

Export Citation Format

Share Document