Effects of Iron Deficiency Stress on Plant Growth and Quality in Flowering Chinese Cabbage and Its Adaptive Response

Author(s):  
Xian Yang

Abstract Iron (Fe) plays an important role in the growth and development of the human body and plants. The effects of different Fe concentrations, 1-aminocyclopropane-1-carboxylic acid (ACC), and cobalt chloride (Co2+) treatments on plant growth, quality and the adaptive response to Fe deficiency stress were investigated in flowering Chinese cabbage. The results revealed that Fe deficiency stress inhibited plant growth. The content of vitamin C (Vc), soluble protein, and soluble sugar in leaves and stalks were significantly reduced under Fe deficiency stress, while the content of cellulose and nitrate was increased. Meanwhile, Fe deficiency stress obviously reduced the net photosynthetic rate and nitrate reductase (NR) activity of leaves. The balance system of active oxygen metabolism was destroyed due to Fe deficiency, resulting in the decrease of catalase (CAT) activity, superoxide dismutase (SOD) activity of roots and leaves, and peroxidase (POD) activity of leaves, while POD activity in roots and malonaldehyde (MDA) content were significantly increased. The treatments of Fe deficiency and ACC significantly reduced pH value of the root medium, promoted release of ethylene, and increased Fe3+ reductase activity, while Co2+ treatment showed the results opposite to those of Fe deficiency and ACC treatments. Thus, Fe deficiency stress could induce nitrogen metabolism, photosynthesis, reactive oxygen metabolism, pH of root medium, and Fe3+ reductase activity that was related to physiological adaptive response and tolerance mechanisms. We also found that ethylene could involve in regulating the adaptive response to Fe deficiency stress and improve the availability of Fe in flowering Chinese cabbage.Main ConclusionFe deficiency stress could induce nitrogen metabolism, photosynthesis, reactive oxygen metabolism, pH of root medium, and Fe3+ reductase activity that was related to physiological adaptive response and tolerance mechanisms.

2012 ◽  
Vol 461 ◽  
pp. 3-6
Author(s):  
Shi Wei Song ◽  
Qiu Yan Yan ◽  
Fei Dong ◽  
Hou Cheng Liu ◽  
Guang Wen Sun ◽  
...  

The effect of color shading-nets (red net, blue net and silver net) and ordinary black net on plant growth and nutrient uptake of flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) were studied, with no net shading as the control. The results indicated that, compared with the control, red net covering increased plant height, leaf area and stem diameter of flowering Chinese cabbage. Red and blue nets covering enhanced the above ground fresh weight, while the silver and black nets covering decreased the above ground fresh weight. Shading net covering significantly improved the nitrogen (N) and potassium (K) content of flowering Chinese cabbage, while it had no significant effect on the phosphorus (P) content. Red and blue nets covering enhanced mineral nutrients uptake, while it was decreased under silver and black nets covering. Red and blue nets covering promoted plant growth and nutrients uptake of flowering Chinese cabbage and could be widely applied in leaf vegetable production.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yunna Zhu ◽  
Baifu Qi ◽  
Yanwei Hao ◽  
Houcheng Liu ◽  
Guangwen Sun ◽  
...  

Compared with sole nitrogen (N), the nutrition mixture of ammonium (NH4+) and nitrate (NO3–) is known to better improve crop yield and quality. However, the mechanism underlying this improvement remains unclear. In the present study, we analyzed the changes in nutrient solution composition, content of different N forms in plant tissues and exudates, and expression of plasma membrane (PM) H+-ATPase genes (HAs) under different NH4+/NO3– ratios (0/100, 10/90, 25/75, 50/50 as control, T1, T2, and T3) in flowering Chinese cabbage. We observed that compared with the control, T1 and T2 increased the economical yield of flowering Chinese cabbage by 1.26- and 1.54-fold, respectively, whereas T3 significantly reduced plant yield. Compared with the control, T1–T3 significantly reduced the NO3– content and increased the NH4+, amino acid, and soluble protein contents of flowering Chinese cabbage to varying extents. T2 significantly increased the N use efficiency (NUE), whereas T3 significantly decreased it to only being 70.25% of that of the control. Owing to the difference in N absorption and utilization among seedlings, the pH value of the nutrient solution differed under different NH4+/NO3– ratios. At harvest, the pH value of T2 was 5.8; in the control and T1, it was approximately 8.0, and in T3 it was only 3.6. We speculated that appropriate NH4+/NO3– ratios may improve N absorption and assimilation and thus promote the growth of flowering Chinese cabbage, owing to the suitable pH value. On the contrary, addition of excessive NH4+ may induce rhizosphere acidification and ammonia toxicity, causing plant growth inhibition. We further analyzed the transcription of PM H+-ATPase genes (HAs). HA1 and HA7 transcription in roots was significantly down-regulated by the addition of the mixture of NH4+ and NO3–, whereas the transcription of HA2, HA9 in roots and HA7, HA8, and HA10 in leaves was sharply up-regulated by the addition of the mixture; the transcription of HA3 was mainly enhanced by the highest ratio of NH4+/NO3–. Our results provide valuable information about the effects of treatments with different NH4+/NO3– ratios on plant growth and N uptake and utilization.


Author(s):  
R.H. Li ◽  
Y.S. Xia ◽  
Y. Li ◽  
L.G. Xu ◽  
H. Zhang ◽  
...  

2014 ◽  
Vol 164 (4) ◽  
pp. 1636-1648 ◽  
Author(s):  
Graham Noctor ◽  
Amna Mhamdi ◽  
Christine H. Foyer

2017 ◽  
Vol 44 (12) ◽  
pp. 1194 ◽  
Author(s):  
Joanne Tilbrook ◽  
Rhiannon K. Schilling ◽  
Bettina Berger ◽  
Alexandre F. Garcia ◽  
Christine Trittermann ◽  
...  

Soil salinity can severely reduce crop growth and yield. Many studies have investigated salinity tolerance mechanisms in cereals using phenotypes that are relatively easy to measure. The majority of these studies measured the accumulation of shoot Na+ and the effect this has on plant growth. However, plant growth is reduced immediately after exposure to NaCl before Na+ accumulates to toxic concentrations in the shoot. In this study, nondestructive and destructive measurements are used to evaluate the responses of 24 predominately Australian barley (Hordeum vulgare L.) lines at 0, 150 and 250 mM NaCl. Considerable variation for shoot tolerance mechanisms not related to ion toxicity (shoot ion-independent tolerance) was found, with some lines being able to maintain substantial growth rates under salt stress, whereas others stopped growing. Hordeum vulgare spp. spontaneum accessions and barley landraces predominantly had the best shoot ion independent tolerance, although two commercial cultivars, Fathom and Skiff, also had high tolerance. The tolerance of cv. Fathom may be caused by a recent introgression from H. vulgare L. spp. spontaneum. This study shows that the most salt-tolerant barley lines are those that contain both shoot ion-independent tolerance and the ability to exclude Na+ from the shoot (and thus maintain high K+ : Na+ ratios).


Sign in / Sign up

Export Citation Format

Share Document