Effect of Color Shading Nets on Growth and Nutrient Uptake of Flowering Chinese Cabbage

2012 ◽  
Vol 461 ◽  
pp. 3-6
Author(s):  
Shi Wei Song ◽  
Qiu Yan Yan ◽  
Fei Dong ◽  
Hou Cheng Liu ◽  
Guang Wen Sun ◽  
...  

The effect of color shading-nets (red net, blue net and silver net) and ordinary black net on plant growth and nutrient uptake of flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) were studied, with no net shading as the control. The results indicated that, compared with the control, red net covering increased plant height, leaf area and stem diameter of flowering Chinese cabbage. Red and blue nets covering enhanced the above ground fresh weight, while the silver and black nets covering decreased the above ground fresh weight. Shading net covering significantly improved the nitrogen (N) and potassium (K) content of flowering Chinese cabbage, while it had no significant effect on the phosphorus (P) content. Red and blue nets covering enhanced mineral nutrients uptake, while it was decreased under silver and black nets covering. Red and blue nets covering promoted plant growth and nutrients uptake of flowering Chinese cabbage and could be widely applied in leaf vegetable production.

2013 ◽  
Vol 37 (4) ◽  
pp. 635-644 ◽  
Author(s):  
FE Elahi ◽  
MAU Mridha ◽  
FM Aminuzzaman

Mycorrhizal fungi have their most significant effect on plant growth and have shown to reduce arsenic contamination to chili. The present experiment was carried out to determine the influence of AMF inoculation on plant growth, nutrient uptake, arsenic toxicity, and chlorophyll content of chili grown in arsenic amended soil. Chili was grown in arsenic amended soils with or without mycorrhizal inoculation. Three levels of arsenic concentrations (10 ppm, 100 ppm, and 500 ppm) were used. The seed germination was affected more by the two treatment variables. Root length, shoot height, root fresh weight, shoot fresh weight, root dry weight, shoot dry weight were higher in AMF inoculated plants in comparison to their respective treatments and decreased significantly with the increase rate of arsenic concentrations. Less arsenic content, higher chlorophyll, and nutrient uptake were recorded in mycorrhiza inoculated chili plants. The present findings indicated that AMP inoculation not only minimize arsenic toxicity, but also can increase growth and nutrient uptake of chili. DOI: http://dx.doi.org/10.3329/bjar.v37i4.14388 Bangladesh J. Agril. Res. 37(4): 635-644, December 2012


2021 ◽  
Author(s):  
Xian Yang

Abstract Iron (Fe) plays an important role in the growth and development of the human body and plants. The effects of different Fe concentrations, 1-aminocyclopropane-1-carboxylic acid (ACC), and cobalt chloride (Co2+) treatments on plant growth, quality and the adaptive response to Fe deficiency stress were investigated in flowering Chinese cabbage. The results revealed that Fe deficiency stress inhibited plant growth. The content of vitamin C (Vc), soluble protein, and soluble sugar in leaves and stalks were significantly reduced under Fe deficiency stress, while the content of cellulose and nitrate was increased. Meanwhile, Fe deficiency stress obviously reduced the net photosynthetic rate and nitrate reductase (NR) activity of leaves. The balance system of active oxygen metabolism was destroyed due to Fe deficiency, resulting in the decrease of catalase (CAT) activity, superoxide dismutase (SOD) activity of roots and leaves, and peroxidase (POD) activity of leaves, while POD activity in roots and malonaldehyde (MDA) content were significantly increased. The treatments of Fe deficiency and ACC significantly reduced pH value of the root medium, promoted release of ethylene, and increased Fe3+ reductase activity, while Co2+ treatment showed the results opposite to those of Fe deficiency and ACC treatments. Thus, Fe deficiency stress could induce nitrogen metabolism, photosynthesis, reactive oxygen metabolism, pH of root medium, and Fe3+ reductase activity that was related to physiological adaptive response and tolerance mechanisms. We also found that ethylene could involve in regulating the adaptive response to Fe deficiency stress and improve the availability of Fe in flowering Chinese cabbage.Main ConclusionFe deficiency stress could induce nitrogen metabolism, photosynthesis, reactive oxygen metabolism, pH of root medium, and Fe3+ reductase activity that was related to physiological adaptive response and tolerance mechanisms.


2016 ◽  
Vol 22 ◽  
pp. 45-51
Author(s):  
KP Gabriel ◽  
HC Lakshman ◽  
Tanzima Yeasmin

Context: Arbuscular-Mycorrhizal fungi colonization in roots of many plants promotes the increased nutrient uptake especially the phosphorus from phosphorus deficient soil.Objective: To compare the efficacy of different concentration of recommended dosages of super phosphate fertilizers with inoculation of AM fungi to evaluate growth, nutrients uptake on Niger plant (Guizotia abyssinica (L.f) Cass. var, RCR-18).Materials and Methods: The effect of two Arbuscular mycorrhizal fungi Scutellospora nigra and Glomus mosseae with 4 different dosage (25%, 50%, 75%, 100% ) of superphosphate (P2O5) was treated on growth yield and nutrient uptake in Niger plant (Guizotia abyssinica (L.f) Cass. var, RCR-18) was evaluated under greenhouse conditions. Pots were watered they were harvested once in 30 days intervals. For 90 days the following readings viz., plant height, root length, biomass, grains yield, percent root colonization, spore number macro-micro nutrients contents in shoots and roots were determined.Results: Scutellospora nigra with 50% RDSP/kg showed a significant increase in the plant growth biomass of shoot and root of Guizotia abyssinica (L.f) Cass. var, RCR-18. Percent root colonization, seed number and N, P, K and Zn, Mg uptake in shoot and root.Conclusion: Overall, our results clearly suggest that synergistic and additive mechanisms involved can enhances the plant growth, nutrient uptake and adaptation to unfavorable drought soil conditions.J. bio-sci. 22: 45-51, 2014


2017 ◽  
Vol 866 ◽  
pp. 33-36
Author(s):  
Nithiwatthn Choosakul ◽  
Piyanath Pagamas

Nowadays, shading net is widely use in Thailand, especially for vegetable production. Many colors of shading net can be found in the market. In this experiment, we set up three net houses for lettuce by using three colors of 50% transparent shading net, black, red and green. Ten of 15 days after planting (DAP) lettuces were moved to each color net house and control (direct sun). Total 40 lettuces were used for 10 days experiment. The result showed that the leave length and width of lettuce under red shading net respectively were significantly bigger than those under green shading net and control treatment without significant difference with the black shading net. The lettuce under red shading net had a highest stem diameter, fresh weight and dry weight comparing with others color shading net. The spectra of the solar radiations that transmitted through the red shading net were suitable for the photosynthesis of the lettuce leaves that could promote lettuce growth and yield.


2007 ◽  
Vol 17 (2) ◽  
pp. 227-233 ◽  
Author(s):  
Alejandro R. Puerta ◽  
Suguru Sato ◽  
Yutaka Shinohara ◽  
Toru Maruo

In nutrient film technique (NFT) vegetable production, the use of low-concentration nutrient solutions might lead to a nutrient concentration gradient along the bed, which can translate into nonuniform plant growth. The authors modified a conventional NFT system (cNFT) and propose a modified NFT (mNFT) that enables the production of lettuce (Lactuca sativa) plants of uniform fresh weight along elongated cultural beds. Two experiments were carried out to compare the systems when long cultural beds are used (18 m) in terms of uniformity of plant and nutrient solution characteristics. The results indicated that fresh weight of plants in cNFT decreased as the distance from the nutrient inlet increased, whereas no such trend was observed in mNFT. Leaf nitrate concentration in mNFT was uniform, whereas it was higher near the outlet of cNFT. Ascorbic acid concentration was also uniform in mNFT, but it was found to be lower near the outlet of cNFT. During Expt. 2, the oxygen content along the bed decreased from inlet to outlet in cNFT; however, in mNFT, it remained relatively constant at all sampling positions. Regarding the concentration of the nutrient solution along beds, no significant differences were found between inlet and outlet in both systems. It is suggested that the lower concentration of oxygen found at the outlet of cNFT might have reduced nutrient uptake, thus attenuating the difference in concentration between inlet and outlet. The temperatures of the nutrient solution along mNFT during Expt. 2 tended to be slightly lower than those of cNFT. However, temperatures were still too high and plant growth was negatively affected. The results of this study demonstrate that plants of uniform size and quality can be achieved in long cultural beds (up to 18 m long) supplied with a low-concentration fertilizer solution by using the proposed mNFT.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yunna Zhu ◽  
Baifu Qi ◽  
Yanwei Hao ◽  
Houcheng Liu ◽  
Guangwen Sun ◽  
...  

Compared with sole nitrogen (N), the nutrition mixture of ammonium (NH4+) and nitrate (NO3–) is known to better improve crop yield and quality. However, the mechanism underlying this improvement remains unclear. In the present study, we analyzed the changes in nutrient solution composition, content of different N forms in plant tissues and exudates, and expression of plasma membrane (PM) H+-ATPase genes (HAs) under different NH4+/NO3– ratios (0/100, 10/90, 25/75, 50/50 as control, T1, T2, and T3) in flowering Chinese cabbage. We observed that compared with the control, T1 and T2 increased the economical yield of flowering Chinese cabbage by 1.26- and 1.54-fold, respectively, whereas T3 significantly reduced plant yield. Compared with the control, T1–T3 significantly reduced the NO3– content and increased the NH4+, amino acid, and soluble protein contents of flowering Chinese cabbage to varying extents. T2 significantly increased the N use efficiency (NUE), whereas T3 significantly decreased it to only being 70.25% of that of the control. Owing to the difference in N absorption and utilization among seedlings, the pH value of the nutrient solution differed under different NH4+/NO3– ratios. At harvest, the pH value of T2 was 5.8; in the control and T1, it was approximately 8.0, and in T3 it was only 3.6. We speculated that appropriate NH4+/NO3– ratios may improve N absorption and assimilation and thus promote the growth of flowering Chinese cabbage, owing to the suitable pH value. On the contrary, addition of excessive NH4+ may induce rhizosphere acidification and ammonia toxicity, causing plant growth inhibition. We further analyzed the transcription of PM H+-ATPase genes (HAs). HA1 and HA7 transcription in roots was significantly down-regulated by the addition of the mixture of NH4+ and NO3–, whereas the transcription of HA2, HA9 in roots and HA7, HA8, and HA10 in leaves was sharply up-regulated by the addition of the mixture; the transcription of HA3 was mainly enhanced by the highest ratio of NH4+/NO3–. Our results provide valuable information about the effects of treatments with different NH4+/NO3– ratios on plant growth and N uptake and utilization.


2022 ◽  
Vol 9 (2) ◽  
pp. 3227-3236
Author(s):  
Yulfita Farni ◽  
Retno Suntari ◽  
Sugeng Prijono

A study on the addition of organic matter of different qualities was carried out to improve plant growth on a degraded sandy soil of Bambang Village, Wajak Malang, East Java. Two potential sources of organic matter in Bambang Village are Tithonia diversifolia and sugarcane leaves. This study aimed at elucidating the changes in some chemical properties of a degraded sandy soil of Malang, East Java, and nutrient uptake and growth of maize plants by applying mixtures of Tithonia diversifolia and sugarcane leaves of different quality. Treatments tested in this study were mixtures of Tithonia diversifolia leaves and sugarcane leaves at various proportions (%w/w), i.e. 100% Tithonia diversifolia leaves (T1), 100% sugarcane leaves (T2), 75% Tithonia diversifolia leaves + 25% sugarcane leaves (T3), 50% Tithonia diversifolia leaves + 50% sugarcane leaves (T4); without organic matters (T6), and control, without organic matter and inorganic fertilizers (T7). The results showed that the application of Tithonia diversifolia and sugarcane leaves affected soil pH, soil exchangeable bases, maize growth, and nutrients uptake. Nutrients taken up by maize plants significantly increased with the addition of Tithonia diversifolia leaves, either alone or in combination with sugarcane leaves. The application of 100% sugarcane leaves did not significantly affect maize growth and nutrient uptake.


Author(s):  
R.H. Li ◽  
Y.S. Xia ◽  
Y. Li ◽  
L.G. Xu ◽  
H. Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document