scholarly journals Carbon Composites From Iron-chelating Pyridine Nitrogen-rich Coordinated Nanosheets for Oxygen Reduction

Author(s):  
Bing Zhang ◽  
Hele Guo ◽  
Longsheng Zhang ◽  
Xu Zhang ◽  
Chao Zhang ◽  
...  

Abstract The exploration of a noble-metal-free and nitrogen-doped carbon (M-N/C) composite electrocatalyst for the oxygen reduction reaction (ORR) remains a great challenge. The activities of the M-N/C composite electrocatalysts are mainly affected by the metal active sites, pyridinic nitrogen, and graphitic nitrogen. In the present work, the iron-coordinated self-assembly is proposed for the preparation of iron-chelating pyridine nitrogen-rich coordinated nanosheet (IPNCN) composites as an electrocatalyst. Due to the highly conjugated structure of the IPNCN precursor, the pyridine nitrogen elements at both ends of the tetrapyrido [3,2-a:2',3'-c:3'',2''-h:2''',3'''-j] phenazine (TP) provide the multiple ligands, and the coordination interactions between the irons and the pyridine nitrogen further improve the thermodynamic stability, where the metal active sites and nitrogen elements are uniformly distributed in the whole structure. The resultant IPNCN composites exhibit excellent ORR performance with an onset potential of 0.93 V and a half potential of 0.84 V. Furthermore, the IPNCN composite electrocatalysts show the higher methanol resistance and electrochemical durability than the commercial Pt/C catalysts. It could be convinced that the as-designed IPNCN composite catalysts would be a promising alternative to the noble metal Pt-based catalysts in the practical applications.

2020 ◽  
Author(s):  
Travis Marshall-Roth ◽  
Nicole J. Libretto ◽  
Alexandra T. Wrobel ◽  
Kevin Anderton ◽  
Nathan D. Ricke ◽  
...  

Iron- and nitrogen-doped carbon (Fe-N-C) materials are leading candidates to replace platinum in fuel cells, but their active site structures are poorly understood. A leading postulate is that iron active sites in this class of materials exist in an Fe-N<sub>4</sub> pyridinic ligation environment. Yet, molecular Fe-based catalysts for the oxygen reduction reaction (ORR) generally feature pyrrolic coordination and pyridinic Fe-N<sub>4</sub> catalysts are, to the best of our knowledge, non-existent. We report the synthesis and characterization of a molecular pyridinic hexaazacyclophane macrocycle, (phen<sub>2</sub>N<sub>2</sub>)Fe, and compare its spectroscopic, electrochemical, and catalytic properties for oxygen reduction to a prototypical Fe-N-C material, as well as iron phthalocyanine, (Pc)Fe, and iron octaethylporphyrin, (OEP)Fe, prototypical pyrrolic iron macrocycles. N 1s XPS signatures for coordinated N atoms in (phen<sub>2</sub>N<sub>2</sub>)Fe are positively shifted relative to (Pc)Fe and (OEP)Fe, and overlay with those of Fe-N-C. Likewise, spectroscopic XAS signatures of (phen<sub>2</sub>N<sub>2</sub>)Fe are distinct from those of both (Pc)Fe and (OEP)Fe, and are remarkably similar to those of Fe-N-C with compressed Fe–N bond lengths of 1.97 Å in (phen<sub>2</sub>N<sub>2</sub>)Fe that are close to the average 1.94 Å length in Fe-N-C. Electrochemical studies establish that both (Pc)Fe and (phen<sub>2</sub>N<sub>2</sub>)Fe have relatively high Fe(III/II) potentials at ~0.6 V, ~300 mV positive of (OEP)Fe. The ORR onset potential is found to directly correlate with the Fe(III/II) potential leading to a ~300 mV positive shift in the onset of ORR for (Pc)Fe and (phen<sub>2</sub>N<sub>2</sub>)Fe relative to (OEP)Fe. Consequently, the ORR onset for (phen<sub>2</sub>N<sub>2</sub>)Fe and (Pc)Fe is within 150 mV of Fe-N-C. Unlike (OEP)Fe and (Pc)Fe, (phen<sub>2</sub>N<sub>2</sub>)Fe displays excellent selectivity for 4-electron ORR with <4% maximum H<sub>2</sub>O<sub>2</sub> production, comparable to Fe-N-C materials. The aggregate spectroscopic and electrochemical data establish (phen<sub>2</sub>N<sub>2</sub>)Fe as a pyridinic iron macrocycle that effectively models Fe-N-C active sites, thereby providing a rich molecular platform for understanding this important class of catalytic materials.<p><b></b></p>


2020 ◽  
Vol 9 (1) ◽  
pp. 843-852
Author(s):  
Hunan Jiang ◽  
Jinyang Li ◽  
Mengni Liang ◽  
Hanpeng Deng ◽  
Zuowan Zhou

AbstractAlthough Fe–N/C catalysts have received increasing attention in recent years for oxygen reduction reaction (ORR), it is still challenging to precisely control the active sites during the preparation. Herein, we report FexN@RGO catalysts with the size of 2–6 nm derived from the pyrolysis of graphene oxide and 1,1′-diacetylferrocene as C and Fe precursors under the NH3/Ar atmosphere as N source. The 1,1′-diacetylferrocene transforms to Fe3O4 at 600°C and transforms to Fe3N and Fe2N at 700°C and 800°C, respectively. The as-prepared FexN@RGO catalysts exhibited superior electrocatalytic activities in acidic and alkaline media compared with the commercial 10% Pt/C, in terms of electrochemical surface area, onset potential, half-wave potential, number of electrons transferred, kinetic current density, and exchange current density. In addition, the stability of FGN-8 also outperformed commercial 10% Pt/C after 10000 cycles, which demonstrates the as-prepared FexN@RGO as durable and active ORR catalysts in acidic media.


Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-51 ◽  
Author(s):  
Junxing Han ◽  
Juanjuan Bian ◽  
Chunwen Sun

Oxygen reduction reaction (ORR) plays significant roles in electrochemical energy storage and conversion systems as well as clean synthesis of fine chemicals. However, the ORR process shows sluggish kinetics and requires platinum-group noble metal catalysts to accelerate the reaction. The high cost, rare reservation, and unsatisfied durability significantly impede large-scale commercialization of platinum-based catalysts. Single-atom electrocatalysts (SAECs) featuring with well-defined structure, high intrinsic activity, and maximum atom efficiency have emerged as a novel field in electrocatalytic science since it is promising to substitute expensive platinum-group noble metal catalysts. However, finely fabricating SAECs with uniform and highly dense active sites, fully maximizing the utilization efficiency of active sites, and maintaining the atomically isolated sites as single-atom centers under harsh electrocatalytic conditions remain urgent challenges. In this review, we summarized recent advances of SAECs in synthesis, characterization, oxygen reduction reaction (ORR) performance, and applications in ORR-related H2O2 production, metal-air batteries, and low-temperature fuel cells. Relevant progress on tailoring the coordination structure of isolated metal centers by doping other metals or ligands, enriching the concentration of single-atom sites by increasing metal loadings, and engineering the porosity and electronic structure of the support by optimizing the mass and electron transport are also reviewed. Moreover, general strategies to synthesize SAECs with high metal loadings on practical scale are highlighted, the deep learning algorithm for rational design of SAECs is introduced, and theoretical understanding of active-site structures of SAECs is discussed as well. Perspectives on future directions and remaining challenges of SAECs are presented.


Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1326
Author(s):  
Xiuxiang Liao ◽  
Xiaobo Wang ◽  
Cuiyu Huang ◽  
Lihua Zhu

Copper- and nitrogen-codoped reduced graphene oxide material (Cu/N-rGO) was prepared with a hydrothermal method. Its versatile catalytic performances were demonstrated toward the oxidative degradation of rhodamine B (RhB) and oxygen reduction reaction (ORR). The Cu and N codoping of graphene enhanced not only its activation ability toward H2O2, but also its electrocatalytic ability for ORR. It was observed that the use of 3%Cu/N-rGO together with 40 mmol·L−1 H2O2 and 4 mmol·L−1 Na2CO3 could remove more than 94% of the added RhB (30 mg·L−1) in 20 min through a catalytic Fenton-like degradation. Quenching experiments and electron paramagnetic resonance (EPR) measurements indicated that the main reactive species generated in the catalytic oxidation process were surface-bound •OH. The modified graphene also showed good electrocatalytic activity for ORR reaction in alkaline media through a four-electron mechanism. On the electrode of Cu/N-rGO, the ORR reaction exhibited an onset potential of −0.1 V and a half-wave potential of −0.248 V, which were correspondingly close to those on a Pt/C electrode. In comparison with a Pt/C electrode, the 3%Cu/N-rGO electrode showed much greater tolerance to methanol. Such outstanding catalytic properties are attributed to the abundant active sites and the synergism between Cu and N in Cu/N-rGO.


2021 ◽  
Author(s):  
Weixiang Yang ◽  
Shuihua Tang ◽  
Qiankuan Huang ◽  
Qian Zhang ◽  
Zhen Tang ◽  
...  

Abstract Fe-N-C electrocatalysts have been intensively studied due to their extraordinary catalytic activity toward oxygen reduction reaction (ORR). Here we prepare a Fe-N-C electrocatalyst through cost-effective and nontoxic precursors of 2,6-diaminopyridine (DAP) and FeCl3, where iron ions react with DAP to formed Fe-Nx species first, followed by polymerization and pyrolysis. X-ray diffraction patterns display no obvious Fe2O3 peaks observed in the catalyst as the nominal content of iron addition is less than 10 wt%. X-ray photoelectron spectroscopy spectra indicate that the catalyst has rich pyridinic nitrogen, graphitic nitrogen and Fe-Nx species, which are considered as active sites for ORR. Therefore the catalyst demonstrates an excellent catalytic activity with an onset potential of about 0.96 V, half-wave potential of about 0.84 V, and a limiting current density of 5.8 mA cm-2, better than commercial Pt/C catalyst in an alkaline medium. Furthermore its stability is also much more excellent than that of Pt/C. This work provides a strategy to synthesize universal M-N-C catalysts.


2020 ◽  
Author(s):  
Travis Marshall-Roth ◽  
Nicole J. Libretto ◽  
Alexandra T. Wrobel ◽  
Kevin Anderton ◽  
Nathan D. Ricke ◽  
...  

Iron- and nitrogen-doped carbon (Fe-N-C) materials are leading candidates to replace platinum in fuel cells, but their active site structures are poorly understood. A leading postulate is that iron active sites in this class of materials exist in an Fe-N<sub>4</sub> pyridinic ligation environment. Yet, molecular Fe-based catalysts for the oxygen reduction reaction (ORR) generally feature pyrrolic coordination and pyridinic Fe-N<sub>4</sub> catalysts are, to the best of our knowledge, non-existent. We report the synthesis and characterization of a molecular pyridinic hexaazacyclophane macrocycle, (phen<sub>2</sub>N<sub>2</sub>)Fe, and compare its spectroscopic, electrochemical, and catalytic properties for oxygen reduction to a prototypical Fe-N-C material, as well as iron phthalocyanine, (Pc)Fe, and iron octaethylporphyrin, (OEP)Fe, prototypical pyrrolic iron macrocycles. N 1s XPS signatures for coordinated N atoms in (phen<sub>2</sub>N<sub>2</sub>)Fe are positively shifted relative to (Pc)Fe and (OEP)Fe, and overlay with those of Fe-N-C. Likewise, spectroscopic XAS signatures of (phen<sub>2</sub>N<sub>2</sub>)Fe are distinct from those of both (Pc)Fe and (OEP)Fe, and are remarkably similar to those of Fe-N-C with compressed Fe–N bond lengths of 1.97 Å in (phen<sub>2</sub>N<sub>2</sub>)Fe that are close to the average 1.94 Å length in Fe-N-C. Electrochemical studies establish that both (Pc)Fe and (phen<sub>2</sub>N<sub>2</sub>)Fe have relatively high Fe(III/II) potentials at ~0.6 V, ~300 mV positive of (OEP)Fe. The ORR onset potential is found to directly correlate with the Fe(III/II) potential leading to a ~300 mV positive shift in the onset of ORR for (Pc)Fe and (phen<sub>2</sub>N<sub>2</sub>)Fe relative to (OEP)Fe. Consequently, the ORR onset for (phen<sub>2</sub>N<sub>2</sub>)Fe and (Pc)Fe is within 150 mV of Fe-N-C. Unlike (OEP)Fe and (Pc)Fe, (phen<sub>2</sub>N<sub>2</sub>)Fe displays excellent selectivity for 4-electron ORR with <4% maximum H<sub>2</sub>O<sub>2</sub> production, comparable to Fe-N-C materials. The aggregate spectroscopic and electrochemical data establish (phen<sub>2</sub>N<sub>2</sub>)Fe as a pyridinic iron macrocycle that effectively models Fe-N-C active sites, thereby providing a rich molecular platform for understanding this important class of catalytic materials.<p><b></b></p>


2019 ◽  
Vol 23 (09) ◽  
pp. 1013-1019
Author(s):  
Shen Shen ◽  
Zihui Zhai ◽  
Jiaqi Qin ◽  
Xue Zhang ◽  
Yujiang Song

The employment of inexpensive metallomacrocycles to create non-precious metal electrocatalysts (NPMEs) with high performance remains a challenge. Herein, we report the self-assembly of low-cost and abundant hemin on carbon black (EC600) under hydrothermal conditions in combination with subsequent pyrolysis, leading to a new NPME. Our NPME exhibits a half-wave potential of 0.89 V vs. reversible hydrogen electrode (RHE), an onset potential of 1.0 V vs. RHE and an average HO[Formula: see text] yield below 2% as well as high durability toward oxygen reduction reactions (ORR) in alkaline electrolytes, ranking at the top of all reported NPMEs derived from hemin.


2020 ◽  
Vol 8 (42) ◽  
pp. 22379-22388
Author(s):  
Gil-Seong Kang ◽  
Jue-Hyuk Jang ◽  
Su-Young Son ◽  
Cheol-Ho Lee ◽  
Youn-Ki Lee ◽  
...  

For increasing the active metal sites densities on the M–N–C catalyst the facile strategy was presented through the use of dual active sites such as single atomic Fe–Nx species and nanosized Fe3C with ∼2 nm.


Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1135 ◽  
Author(s):  
Yinglin Zhang ◽  
Yulin Shi ◽  
Bo Yan ◽  
Tingting Wei ◽  
Yin Lv ◽  
...  

The rational treatment of hazardous textile sludge is critical and challenging for the environment and a sustainable future. Here, a water-soluble chitosan derivative was synthesized and used as an effective flocculant in removal of reactive dye from aqueous solution. Employing these chitosan-containing textile sludges as precursors, graphene-like carbon nanosheets were synthesized through simple one-step carbonization with the use of Fe (III) salt as graphitization catalyst. It was found that the resultant graphene-like carbon nanosheets material at thickness near 3.2 nm (NSC-Fe-2) showed a high graphitization degree, high specific surface area, and excellent bifunctional electrochemical performance. As-prepared NSC-Fe-2 catalyst exhibited excellent oxygen reduction reaction (ORR) activity (onset potential 1.05 V) and a much better methanol tolerance than that of commercial Pt/C (onset potential 0.98 V) in an alkaline medium. Additionally, as electrode materials for supercapacitors, NSC-Fe-2 also displayed an outstanding specific capacitance of 195 F g−1 at 1 A g−1 and superior cycling stability (loss of 3.4% after 2500 cycles). The good electrochemical properties of the as-prepared NSC-Fe materials could be attributed to the ultrathin graphene-like nanosheets structure and synergistic effects from codoping of iron and nitrogen. This work develops a simple but effective strategy for direct conversion of textile sewage sludge to value-added graphene-like carbon, which is considered as a promising alternative to fulfill the requirements of environment and energy.


Sign in / Sign up

Export Citation Format

Share Document