scholarly journals A Novel Hypoxic lnc-RNA, HRL-SC, Promotes Proliferation and Migration of Human Dental Pulp Stem Cells Through PI3K/AKT Signalling Pathway

Author(s):  
Junkai Zeng ◽  
Ming Chen ◽  
Yeqing Yang ◽  
Buling Wu

Abstract Background: Human dental pulp stem cells (hDPSCs) are critical for pulp generation. hDPSCs proliferate faster under hypoxia, but the regulatory mechanism of long noncoding RNAs (lncRNAs) in this process is not fully understood.Methods: Novel lncRNAs were obtained by reanalysis of transcriptome datasets coming from RNA-Seq under hypoxia compared with normoxia, and differential expression analysis of target genes were performed. Bioinformatics analyses including Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Gene Set Enrichment Analysis (GSEA) analysis were used to understand the function of key novel lncRNA. hDPSCs were isolated from dental pulp tissue. EdU test and scratch healing test were used to detect the proliferation and migration of hDPSCs. qRT-PCR was used to detect the RNA level expression changes of selected genes. RNA fluorescence in situ hybridization (FISH), small interfering RNA (siRNA), qRT-PCR and western blot analysis were used to explore the function of key novel lncRNA. Results: We identified 496 novel lncRNAs in hDPSCs under hypoxia, including 45 expressed differentially novel lncRNAs. Of them, we focused on a key novel lncRNA, which we named HRL-SC (hypoxia related lncRNA in stem cells). Functional annotation revealed that HRL-SC was associated with hypoxic conditions and PI3K/AKT signalling pathway. HRL-SC was mainly located in the cytoplasm of hDPSCs and had stably high expression under hypoxia. Knockdown of HRL-SC inhibited proliferation and migration of hDPSCs and expression levels of PI3K/AKT related marker proteins. Furthermore, AKT activator SC79 partially offset the inhibitory effect caused by the knockdown, indicating that HRL-SC promoted hDPSCs through PI3K/AKT signalling pathway.Conclusion: Hypoxia related lncRNA HRL-SC promotes proliferation and migration of hDPSCs through PI3K/AKT signalling pathway and it may provide a better understanding for regenerative application of hDPSCs.

2019 ◽  
Vol 20 (22) ◽  
pp. 5778
Author(s):  
Yeon Kim ◽  
Joo-Yeon Park ◽  
Hyun-Joo Park ◽  
Mi-Kyoung Kim ◽  
Yong-Il Kim ◽  
...  

Pentraxin-3 (PTX3) is recognized as a modulator of inflammation and a mediator of tissue repair. In this study, we characterized the role of PTX3 on some biological functions of human dental pulp stem cells (HDPSCs). The expression level of PTX3 significantly increased during osteogenic/odontogenic differentiation of HDPSCs, whereas the knockdown of PTX3 decreased this differentiation. Silencing of PTX3 in HDPSCs inhibited their migration and C-X-C chemokine receptor type 4 (CXCR4) expression. Our present study indicates that PTX3 is involved in osteogenic/odontogenic differentiation and migration of HDPSCs, and may contribute to the therapeutic potential of HDPSCs for regeneration and repair.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Zhihong Ke ◽  
Zailing Qiu ◽  
Tingting Xiao ◽  
Jianchai Zeng ◽  
Luning Zou ◽  
...  

Introduction. Pulp regeneration, as a treatment for pulp necrosis, has significant advantages over root canal therapy for the preservation of living pulp. To date, research on pulp regeneration has mainly focused on the transplantation of pulp stem cells into the root canal, but there is still a lack of research on the migration of pulp cells into the root canal via cell homing. Stem cells from the apical tooth papilla (SCAP) are recognized as multidirectional stem cells, but these cells are difficult to obtain. MicroRNAs are small noncoding RNAs that play crucial roles in regulating normal and pathologic functions. We hypothesized that some types of microRNAs might improve the migration and proliferation function of dental pulp stem cells (DPSCs), which are easily obtained in clinical practice, and as a result, DPSCs might replace SCAP and provide valuable information for regenerative endodontics. Methods. Magnetic activated cell sorting of DPSCs and SCAP was performed. Next-generation sequencing was performed to examine DPSCs and SCAP miRNAs expression and to identify the most significant differentially expressed miRNA. CCK-8 and transwell assays were used to determine the impact of this miRNA on DPSCs proliferation and migration. Results. The most significant differentially expressed miRNA between DPSCs and SCAP was miR-224-5p. Downregulating miR-224-5p promoted DPSCs proliferation and migration; the opposite results were observed when miR-224-5p was upregulated. Conclusion. MiR-224-5p promotes proliferation and migration in DPSCs, a finding that is of great significance for further exploring the role of dental pulp stem cells in regenerative endodontics.


2020 ◽  
Author(s):  
Jialin Zhong ◽  
Xinran Tu ◽  
Yuanyuan Kong ◽  
Liyang Guo ◽  
Baishun Li ◽  
...  

Abstract Background: Increasing evidence has revealed that long non-coding RNAs (lncRNAs) exert critical roles in biological mineralization. As a critical process for dentin formation, odontoblastic differentiation is regulated by complex signaling networks. The present study aimed to investigate the biological role and regulatory mechanisms of lncRNA-H19 (H19) in regulating the odontoblastic differentiation of human dental pulp stem cells (hDPSCs). Methods: We performed lncRNA microarray assay to reveal the expression patterns of lncRNAs involved in odontoblastic differentiation. H19 was identified and verified by qRT-PCR. The gain- and loss-of-function studies were performed to investigate the biological role of H19 in regulating odontoblastic differentiation of hDPSCs in vitro and in vivo. Odontoblastic differentiation was evaluated through qRT-PCR, Western blot and Alizarin Red S staining. Bioinformatics analysis identified that H19 could directly interact with miR-140-5p, which was further verified by luciferase reporter assay. After overexpression of miR-140-5p in hDPSCs, odontoblastic differentiation was determined. Moreover, the potential target genes of miR-140-5p were investigated and the biological functions of BMP-2 and FGF9 in hDPSCs were verified. Co-transfection experiments were conducted to validate miR-140-5p was involved in H19-mediated odontoblastic differentiation in hDPSCs.Results: The expression of H19 was significantly up-regulated in hDPSCs undergoing odontoblastic differentiation. Overexpression of H19 stimulated odontoblastic differentiation in vitro and in vivo, whereas down-regulation of H19 revealed the opposite effect. H19 binds directly to miR-140-5p and overexpression of miR-140-5p inhibited odontoblastic differentiation of hDPSCs. H19 acted as a miR-140-5p sponge, resulting in regulated the expression of BMP-2 and FGF9. Overexpression of H19 abrogated the inhibitory effect of miR-140-5p on odontoblastic differentiation.Conclusion: Our data revealed that H19 plays a positive regulatory role in odontoblastic differentiation of hDPSCs through miR-140-5p/BMP-2/FGF9 axis, suggesting that H19 may be a stimulatory regulator of odontogenesis.


2013 ◽  
Vol 37 (12) ◽  
pp. 1267-1275 ◽  
Author(s):  
Xingmei Feng ◽  
Guijuan Feng ◽  
Jing Xing ◽  
Biyu Shen ◽  
Liren Li ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jialin Zhong ◽  
Xinran Tu ◽  
Yuanyuan Kong ◽  
Liyang Guo ◽  
Baishun Li ◽  
...  

Abstract Background Increasing evidence has revealed that long non-coding RNAs (lncRNAs) exert critical roles in biological mineralization. As a critical process for dentin formation, odontoblastic differentiation is regulated by complex signaling networks. The present study aimed to investigate the biological role and regulatory mechanisms of lncRNA-H19 (H19) in regulating the odontoblastic differentiation of human dental pulp stem cells (hDPSCs). Methods We performed lncRNA microarray assay to reveal the expression patterns of lncRNAs involved in odontoblastic differentiation. H19 was identified and verified as a critical factor by qRT-PCR. The gain- and loss-of-function studies were performed to investigate the biological role of H19 in regulating odontoblastic differentiation of hDPSCs in vitro and in vivo. Odontoblastic differentiation was evaluated through qRT-PCR, Western blot, and Alizarin Red S staining. Bioinformatics analysis identified that H19 could directly interact with miR-140-5p, which was further verified by luciferase reporter assay. After overexpression of miR-140-5p in hDPSCs, odontoblastic differentiation was determined. Moreover, the potential target genes of miR-140-5p were investigated and the biological functions of BMP-2 and FGF9 in hDPSCs were verified. Co-transfection experiments were conducted to validate miR-140-5p was involved in H19-mediated odontoblastic differentiation in hDPSCs. Results The expression of H19 was significantly upregulated in hDPSCs undergoing odontoblastic differentiation. Overexpression of H19 stimulated odontoblastic differentiation in vitro and in vivo, whereas downregulation of H19 revealed the opposite effect. H19 binds directly to miR-140-5p and overexpression of miR-140-5p inhibited odontoblastic differentiation of hDPSCs. H19 acted as a miR-140-5p sponge, resulting in regulated the expression of BMP-2 and FGF9. Overexpression of H19 abrogated the inhibitory effect of miR-140-5p on odontoblastic differentiation. Conclusion Our data revealed that H19 plays a positive regulatory role in odontoblastic differentiation of hDPSCs through miR-140-5p/BMP-2/FGF9 axis, suggesting that H19 may be a stimulatory regulator of odontogenesis.


2014 ◽  
Vol 42 (10) ◽  
pp. 1327-1334 ◽  
Author(s):  
Dongmei Li ◽  
Lei Fu ◽  
Yaqing Zhang ◽  
Qing Yu ◽  
Fengle Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document