scholarly journals Downregulation of miR-224-5p Promotes Migration and Proliferation in Human Dental Pulp Stem Cells

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Zhihong Ke ◽  
Zailing Qiu ◽  
Tingting Xiao ◽  
Jianchai Zeng ◽  
Luning Zou ◽  
...  

Introduction. Pulp regeneration, as a treatment for pulp necrosis, has significant advantages over root canal therapy for the preservation of living pulp. To date, research on pulp regeneration has mainly focused on the transplantation of pulp stem cells into the root canal, but there is still a lack of research on the migration of pulp cells into the root canal via cell homing. Stem cells from the apical tooth papilla (SCAP) are recognized as multidirectional stem cells, but these cells are difficult to obtain. MicroRNAs are small noncoding RNAs that play crucial roles in regulating normal and pathologic functions. We hypothesized that some types of microRNAs might improve the migration and proliferation function of dental pulp stem cells (DPSCs), which are easily obtained in clinical practice, and as a result, DPSCs might replace SCAP and provide valuable information for regenerative endodontics. Methods. Magnetic activated cell sorting of DPSCs and SCAP was performed. Next-generation sequencing was performed to examine DPSCs and SCAP miRNAs expression and to identify the most significant differentially expressed miRNA. CCK-8 and transwell assays were used to determine the impact of this miRNA on DPSCs proliferation and migration. Results. The most significant differentially expressed miRNA between DPSCs and SCAP was miR-224-5p. Downregulating miR-224-5p promoted DPSCs proliferation and migration; the opposite results were observed when miR-224-5p was upregulated. Conclusion. MiR-224-5p promotes proliferation and migration in DPSCs, a finding that is of great significance for further exploring the role of dental pulp stem cells in regenerative endodontics.

2021 ◽  
Author(s):  
Junkai Zeng ◽  
Ming Chen ◽  
Yeqing Yang ◽  
Buling Wu

Abstract Background: Human dental pulp stem cells (hDPSCs) are critical for pulp generation. hDPSCs proliferate faster under hypoxia, but the regulatory mechanism of long noncoding RNAs (lncRNAs) in this process is not fully understood.Methods: Novel lncRNAs were obtained by reanalysis of transcriptome datasets coming from RNA-Seq under hypoxia compared with normoxia, and differential expression analysis of target genes were performed. Bioinformatics analyses including Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Gene Set Enrichment Analysis (GSEA) analysis were used to understand the function of key novel lncRNA. hDPSCs were isolated from dental pulp tissue. EdU test and scratch healing test were used to detect the proliferation and migration of hDPSCs. qRT-PCR was used to detect the RNA level expression changes of selected genes. RNA fluorescence in situ hybridization (FISH), small interfering RNA (siRNA), qRT-PCR and western blot analysis were used to explore the function of key novel lncRNA. Results: We identified 496 novel lncRNAs in hDPSCs under hypoxia, including 45 expressed differentially novel lncRNAs. Of them, we focused on a key novel lncRNA, which we named HRL-SC (hypoxia related lncRNA in stem cells). Functional annotation revealed that HRL-SC was associated with hypoxic conditions and PI3K/AKT signalling pathway. HRL-SC was mainly located in the cytoplasm of hDPSCs and had stably high expression under hypoxia. Knockdown of HRL-SC inhibited proliferation and migration of hDPSCs and expression levels of PI3K/AKT related marker proteins. Furthermore, AKT activator SC79 partially offset the inhibitory effect caused by the knockdown, indicating that HRL-SC promoted hDPSCs through PI3K/AKT signalling pathway.Conclusion: Hypoxia related lncRNA HRL-SC promotes proliferation and migration of hDPSCs through PI3K/AKT signalling pathway and it may provide a better understanding for regenerative application of hDPSCs.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Ming Chen ◽  
Yeqing Yang ◽  
Junkai Zeng ◽  
Zilong Deng ◽  
Buling Wu

Introduction. Odontogenic differentiation of human dental pulp stem cells (hDPSCs) is a key step of pulp regeneration. Recent studies showed that circular RNAs (circRNAs) have many biological functions and that competing endogenous RNA (ceRNA) is their most common mechanism of action. However, the role of circRNAs in hDPSCs during odontogenesis is still unclear. Methods. Isolated hDPSCs were cultured in essential and odontogenic medium. Total RNA was extracted after 14 days of culture, and then, microarray analysis was performed to measure the differential expressions of circRNAs. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was then performed to validate the microarray results. Based on microarray data from this study and available in the database, a ceRNA network was constructed to investigate the potential function of circRNAs during odontogenesis. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to investigate the potential correlation between signaling pathways and circRNAs. In addition, qRT-PCR and Western blot analysis were used to explore the function of hsa_circRNA_104101. Results. We found 43 upregulated circRNAs and 144 downregulated circRNAs during the odontogenic differentiation process (fold change>1.5 and <-1.5, respectively; P<0.05). qRT-PCR results were in agreement with the microarray results. Bioinformatic analysis revealed that the Wnt signaling pathway and the TGF-β signaling pathway, as well as the other pathways associated with odontogenic differentiation, were correlated to the differentially expressed circRNAs. hsa_circRNA_104101 was proved to promote the odontogenic differentiation of hDPSCs. Conclusion. This study reported 187 circRNAs that were differentially expressed in hDPSCs during odontogenic differentiation. Bioinformatic analysis of the expression data suggested that circRNA-miRNA-mRNA networks might act as a crucial mechanism for hDPSC odontogenic differentiation, providing a theoretical foundation for the study of pulp regeneration regulation by circRNAs.


2017 ◽  
Vol 50 (5) ◽  
pp. e12361 ◽  
Author(s):  
Xuexin Zhang ◽  
Hui Li ◽  
Jingjing Sun ◽  
Xiangyou Luo ◽  
Hefeng Yang ◽  
...  

2021 ◽  
Vol 02 (03) ◽  
Author(s):  
Saberian E ◽  
Jalili Sadrabad M ◽  
Petrasova A ◽  
Izadi A

2015 ◽  
Vol 21 (3-4) ◽  
pp. 550-563 ◽  
Author(s):  
Waruna Lakmal Dissanayaka ◽  
Kenneth M. Hargreaves ◽  
Lijian Jin ◽  
Lakshman P. Samaranayake ◽  
Chengfei Zhang

2021 ◽  
Author(s):  
Haiyun Luo ◽  
Wenjing Liu ◽  
Yanli Zhang ◽  
Xiao Jiang ◽  
Shiqing Wu ◽  
...  

Abstract Background: Dental pulp stem cells (DPSCs) exhibited self-renewal, pluripotency capacity and served as promising cells source in endodontic regeneration and tissue engineering. Meanwhile, the regenerative capacity of DPSCs is limited and reduced in long lifespan. N6-methyladenosine (m6A) is the most prevalent, reversible internal modification in RNAs. The methyltransferases complex and demethylases mediated m6A methylation and cooperated to impact various biological processes associated with stem cell fate determination. However, the biological effect of m6A methylation in DPSCs remained unclear. Methods: Cell surface markers and differentiation potential of primary DPSCs were identified and m6A immunoprecipitation with deep sequencing (m6A RIP-seq) was used to uncover characteristics of m6A modifications in DPSCs transcriptome. Expression level of m6A-related genes were evaluated in immature/mature pulp tissues and cells. Lentiviral vectors were constructed to knockdown or overexpress methyltransferase like 3 (METTL3). Cell morphology, viability, senescence and apoptosis were further analyzed by β-galactosidase, TUNEL staining and flow cytometry. Bioinformatic analysis combing m6A RIP and shMETTL3 RNA-seq was used to functionally enrich overlapped genes and screen target of METTL3. Cell cycle distributions were assayed by flow cytometry and m6A RIP-qPCR was used to confirm METTL3 mediated m6A methylation in DPSCs. Results: Here, m6A peaks distribution, binding area and motif in DPSCs were first revealed by m6A RIP-seq. We also found a relative high expression level of METTL3 in immature DPSCs with superior regenerative potential and METTL3 knockdown induced cell apoptosis and senescence. Furthermore, Conjoint analysis of m6A RIP and RNA-sequencing showed differentially expressed genes affected by METTL3 depletion was mainly enriched in cell cycle, mitosis and alteration of METTL3 expression resulted in cell cycle arrest which indicated METTL3 make essential effect in cell cycle control. To further investigate underlying mechanisms, we explored proteins interaction network of differentially expressed genes and Polo-like Kinase 1 (PLK1), a critical cycle modulator was identified as target of METTL3-mediated m6A methylation in DPSCs. Conclusions: These results revealed m6A methylated hallmarks in DPSCs and a regulatory role of METTL3 in cell cycle control. Our study shed light on therapeutic approaches in vital pulp therapy and serve new insight in stem cells based tissue engineering.


2019 ◽  
Vol 20 (22) ◽  
pp. 5778
Author(s):  
Yeon Kim ◽  
Joo-Yeon Park ◽  
Hyun-Joo Park ◽  
Mi-Kyoung Kim ◽  
Yong-Il Kim ◽  
...  

Pentraxin-3 (PTX3) is recognized as a modulator of inflammation and a mediator of tissue repair. In this study, we characterized the role of PTX3 on some biological functions of human dental pulp stem cells (HDPSCs). The expression level of PTX3 significantly increased during osteogenic/odontogenic differentiation of HDPSCs, whereas the knockdown of PTX3 decreased this differentiation. Silencing of PTX3 in HDPSCs inhibited their migration and C-X-C chemokine receptor type 4 (CXCR4) expression. Our present study indicates that PTX3 is involved in osteogenic/odontogenic differentiation and migration of HDPSCs, and may contribute to the therapeutic potential of HDPSCs for regeneration and repair.


Sign in / Sign up

Export Citation Format

Share Document