scholarly journals GSK-3β Inhibitor SB216763 Resists Oxidative Stress-Induced Apoptosis in Nucleus Pulposus Cell

Author(s):  
Kai Zhu ◽  
Song Guo ◽  
Guoyi Han ◽  
Xiancheng Qiang ◽  
Mengmeng Ma ◽  
...  

Abstract Oxidative stress in the intervertebral disc leads to nucleus pulposus (NP) degeneration by inducing cell apoptosis. However, the molecular mechanisms underlying this process remain unclear. Increasing evidence indicates that GSK-3β is related to cell apoptosis induced by oxidative stress. In this study, we explored whether GSK-3β inhibition protects human NP cell against apoptosis under oxidative stress. Immunofluorescence staining was used to show the expression of GSK-3β in human NP cells (NPCs). Flow cytometry, mitochondrial staining and western blot were used to detect apoptosis of treated NPCs, changes of mitochondrial membrane potential and the expression of mitochondrial apoptosis-related proteins using GSK-3β specific inhibitor SB216763. Coprecipitation was used to demonstrate the interaction between GSK-3β and Bcl-2 in an GSK-3β knockdown in vitro model. We delineated the protective effect of GSK-3β specific inhibitor SB216763 on human NP cell apoptosis induced by oxidative stress in vitro. Further, we showed SB216763 exert the protective effect by preservation of the mitochondrial membrane potential and inhibition of caspase 3/7 activity during oxidative injury. The detailed mechanism underlying the antiapoptotic effect of GSK-3β inhibition was also studied by analyzing mitochondrial apoptosis pathway in vitro. We concluded that the GSK-3β inhibitor SB216763 protected mitochondrial membrane potential to delay nucleus pulposus cell apoptosis by inhibiting the interaction between GSK-3β and Bcl-2 and subsequently reducing Cyto-C release and caspase-3 activation. Together, inhibition of GSK-3β using SB216763 in NP may be a favorable therapeutic strategy to slow intervertebral disc degeneration.

2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Junqiang Yan ◽  
Hongxia Ma ◽  
Xiaoyi Lai ◽  
Jiannan Wu ◽  
Anran Liu ◽  
...  

Abstract Background Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. The oxidative stress is an important component of the pathogenesis of PD. Artemisinin (ART) has antioxidant and neuroprotective effects. The purpose of this study is to explore the neuroprotective effect of ART on 1-methyl-4-phenyliodine iodide (MPP +)-treated SH-SY5Y cells and underlying mechanism. Methods We used MPP+-treated SH-SY5Y cells to study the neuroprotective effect of ART. Cell viability was measured by MTT assay after incubating the cells with MPP+ and/or ART for 24 h. DCFH-DA was used to detect the level of intracellular reactive oxygen species (ROS), and WST-8 was used to detect the level of superoxide dismutase (SOD). The level of intracellular reduced glutathione (GSH) was detected with 5,5΄-dithiobis-(2-nitrobenzoic acid), and the level of malondialdehyde (MDA) was assessed based on the reaction of MDA and thiobarbituric acid. A mitochondrial membrane potential detection kit (JC-1) was used to detect changes in the mitochondrial membrane potential (MMP), and an Annexin V-FITC cell apoptosis kit was used to detect cell apoptosis. The expression levels of caspase-3, cleaved caspase-3 and the autophagy-related proteins LC3, beclin-1, and p62 were detected by Western blotting. In addition, to verify the change in autophagy, we used immunofluorescence to detect the expression of LC3 and p62. Results No significant cytotoxicity was observed at ART concentrations up to 40 μM. ART could significantly increase the viability of SH-SY5Y cells treated with MPP+ and reduce oxidative stress damage and apoptosis. In addition, the Western blotting and immunofluorescence results showed that MPP+ treatment could increase the protein expression of beclin1 and LC3II/LC3I and decrease the protein expression of p62, indicating that MPP+ treatment could induce autophagy. Simultaneous treatment with ART and MPP+ could decrease the protein expression of beclin1 and LC3II/LC3I and increase the protein expression of p62, indicating that ART could decrease the level of autophagy induced by MPP+. Conclusion Our results indicate that ART has a protective effect on MPP+-treated SH-SY5Y cells by the antioxidant, antiapoptotic activities and inhibition of autophagy. Our findings may provide new hope for the prevention and treatment of PD.


Zygote ◽  
2019 ◽  
Vol 27 (4) ◽  
pp. 203-213 ◽  
Author(s):  
Anima Tripathi ◽  
Vivek Pandey ◽  
A.N. Sahu ◽  
Alok K. Singh ◽  
Pawan K. Dubey

SummaryThe present study investigated if the presence of encircling granulosa cells protected against di(2-ethylhexyl)phthalate (DEHP)-induced oxidative stress in rat oocytes cultured in vitro. Denuded oocytes and cumulus–oocyte complexes (COCs) were treated with or without various doses of DEHP (0.0, 25.0, 50.0, 100, 200, 400 and 800 μM) in vitro. Morphological apoptotic changes, levels of oxidative stress and reactive oxygen species (ROS), mitochondrial membrane potential, and expression levels of apoptotic markers (Bcl2, Bax, cytochrome c) were analyzed. Our results showed that DEHP induced morphological apoptotic changes in a dose-dependent manner in denuded oocytes cultured in vitro. The effective dose of DEHP (400 µg) significantly (P>0.05) increased oxidative stress by elevating ROS levels and the mitochondrial membrane potential with higher mRNA expression and protein levels of apoptotic markers (Bax, cytochrome c). Encircling granulosa cells protected oocytes from DEHP-induced morphological changes, increased oxidative stress and ROS levels, as well as increased expression of apoptotic markers. Taken together our data suggested that encircling granulosa cells protected oocytes against DEHP-induced apoptosis and that the presence of granulosa cells could act positively towards the survival of oocytes under in vitro culture conditions and may be helpful during assisted reproductive technique programmes.


Zygote ◽  
2019 ◽  
Vol 28 (1) ◽  
pp. 59-64
Author(s):  
Yuhan Zhao ◽  
Yongnan Xu ◽  
Yinghua Li ◽  
Qingguo Jin ◽  
Jingyu Sun ◽  
...  

SummaryKaempferol (KAE) is one of the most common dietary flavonols possessing biological activities such as anticancer, anti-inflammatory and antioxidant effects. Although previous studies have reported the biological activity of KAE on a variety of cells, it is not clear whether KAE plays a similar role in oocyte and embryo in vitro culture systems. This study investigated the effect of KAE addition to in vitro maturation on the antioxidant capacity of embryos in porcine oocytes after parthenogenetic activation. The effects of kaempferol on oocyte quality in porcine oocytes were studied based on the expression of related genes, reactive oxygen species, glutathione and mitochondrial membrane potential as criteria. The rate of blastocyst formation was significantly higher in oocytes treated with 0.1 µm KAE than in control oocytes. The mRNA level of the apoptosis-related gene Caspase-3 was significantly lower in the blastocysts derived from KAE-treated oocytes than in the control group and the mRNA expression of the embryo development-related genes COX2 and SOX2 was significantly increased in the KAE-treated group compared with that in the control group. Furthermore, the level of intracellular reactive oxygen species was significantly decreased and that of glutathione was significantly increased after KAE treatment. Mitochondrial membrane potential (ΔΨm) was increased and the activity of Caspase-3 was significantly decreased in the KAE-treated group compared with that in the control group. Taken together, these results suggested that KAE is beneficial for the improvement of embryo development by inhibiting oxidative stress in porcine oocytes.


Author(s):  
Jian Zhang ◽  
Hong-Yan Cao ◽  
Ji-Qun Wang ◽  
Guo-Dong Wu ◽  
Lin Wang

ObjectiveGraphene has been widely used for various biological and biomedical applications due to its unique physiochemical properties. This study aimed to evaluate the cardiotoxicity of graphene oxide (GO) and reduced GO (rGO) in vitro and in vivo, as well as to investigate the underlying toxicity mechanisms.MethodsGO was reduced by gamma irradiation to prepare rGO and then characterized by UV/visible light absorption spectroscopy. Rat myocardial cells (H9C2) were exposed to GO or rGO with different absorbed radiation doses. The in vitro cytotoxicity was evaluated by MTT assay, cell apoptosis assay, and lactate dehydrogenase (LDH) activity assay. The effects of GO and rGO on oxidative damage and mitochondrial membrane potential were also explored in H9C2 cells. For in vivo experiments, mice were injected with GO or rGO. The histopathological changes of heart tissues, as well as myocardial enzyme activity and lipid peroxidation indicators in heart tissues were further investigated.ResultsrGO was developed from GO following different doses of gamma irradiation. In vitro experiments in H9C2 cells showed that compared with control cells, both GO and rGO treatment inhibited cell viability, promoted cell apoptosis, and elevated the LDH release. With the increasing radiation absorbed dose, the cytotoxicity of rGO gradually increased. Notably, GO or rGO treatment increased the content of ROS and reduced the mitochondrial membrane potential in H9C2 cells. In vivo experiments also revealed that GO or rGO treatment damaged the myocardial tissues and changed the activities of several myocardial enzymes and the lipid peroxidation indicators in the myocardial tissues.ConclusionGO exhibited a lower cardiotoxicity than rGO due to the structure difference, and the cardiotoxicity of GO and rGO might be mediated by lipid peroxidation, oxidative stress, and mitochondrial dysfunction.


2020 ◽  
Author(s):  
Saijun Zhou ◽  
Zhenxing Meng ◽  
Shumin Xiao ◽  
Ting Cheng ◽  
Shuai Huang ◽  
...  

Abstract BackgroundMyocardial ischemia/reperfusion (I/R) injury is one of the most important reasons for death of coronary heart disease after vascular recanalization. New evidences have shown that β2-glycoprotein I (β2GPI) plays a protective role in cardiovascular diseases. This study aims to evaluate the effects of reduced β2GPI (R-β2GPI), one form of β2GPI, on myocardial I/R injury, and to explore related mechanisms. MethodsThe in vivo myocardial I/R models of Sprague Dawley rats and in vitro hypoxia/reoxygenation(H/R) models of H9c2 cells were established. The myocardial infarction and morphological changes in SD rats were measured by the TTC staining and HE staining. Creatine kinase-MB (CK-MB) and cardiac troponin I (cTnI) levels in plasma were detected by ELISA Assay kit. Terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL) method and caspase-3 colorimetric assay kit were used to determine myocardial apoptosis. Intracellular reactive oxygen species (ROS) generation and mitochondrial membrane potential of H9c2 cells were measured by fluorescent probe DCFH-DA and JC-1 fluorescent staining respectively. To evaluate cell damage, cell viability was assessed by determining the release of lactate dehydrogenase (LDH). The ratio of Bcl-2/Bax at mRNA level was detected by reverse transcription-polymerase chain reaction (RT-PCR). Western blot analysis was used to detect the expression levels of total Akt and phosphorylated Akt as well as the expression levels of total GSK-3βand phosphorylated GSK-3β in H9c2 cells. ResultsOur results suggested that R-β2GPI improved I/R model rats’ heart function, decreased infarct size, reduced serum CK-MB, cTnI levels, cell apoptosis and caspase3 activity. In vitro, R-β2GPI decreased LDH leakage, reduced ROS generation, maintained mitochondrial membrane potential and increased bcl-2/bax mRNA ratio; increased phosphorylation of Akt and GSK-3β in H9c2 cells following Hypoxia/Reoxygenation (H/R) jnjury. ConclusionR-β2GPI alleviated myocardial I/R (or H/R) injury by reducing oxidative stress and inhibiting mitochondrial apoptotic pathway via increasing the phosphorylation of Akt/GSK-3β.


2001 ◽  
Vol 1505 (2-3) ◽  
pp. 226-237 ◽  
Author(s):  
Luca Tiano ◽  
Donatella Fedeli ◽  
Patrizia Ballarini ◽  
Giorgio Santoni ◽  
Giancarlo Falcioni

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Zhen-zhi Meng ◽  
Jing-hong Hu ◽  
Jia-xu Chen ◽  
Guang-xin Yue

Xiaoyaosan (XYS) decoction is a famous prescription for the treatment of mental disorders in China. In this experiment, we explored the way in which XYS decoction-reverse hippocampus neuron apoptosis in vitro. We used XYS decoction-containing serum to treat oxidative-stress-induced hippocampus neuron apoptosis and used immunofluorescence to determine the concentration of free calcium, mitochondrial membrane potential, and apoptotic rate of neuron. Results showed that 3-hour oxidative stress decrease mitochondrial membrane potential, increase the concentration of free calcium and apoptotic rate of neuron via triggering pathological changes of nucleus such as karyorrhexis, karyopyknosis. Low, medium, high dose of XYS-decoction-containing serum could reverse these phenomenon, and the effect of low-dose XYS-decoction-containing serum was significant in improving mitochondrial membrane potential and apoptotic rate of neuron. These findings suggest that XYS decoction may be helpful in reducing oxidative-stress-induced hippocampus neuron apoptosis.


Sign in / Sign up

Export Citation Format

Share Document