scholarly journals Graphene Oxide and Reduced Graphene Oxide Exhibit Cardiotoxicity Through the Regulation of Lipid Peroxidation, Oxidative Stress, and Mitochondrial Dysfunction

Author(s):  
Jian Zhang ◽  
Hong-Yan Cao ◽  
Ji-Qun Wang ◽  
Guo-Dong Wu ◽  
Lin Wang

ObjectiveGraphene has been widely used for various biological and biomedical applications due to its unique physiochemical properties. This study aimed to evaluate the cardiotoxicity of graphene oxide (GO) and reduced GO (rGO) in vitro and in vivo, as well as to investigate the underlying toxicity mechanisms.MethodsGO was reduced by gamma irradiation to prepare rGO and then characterized by UV/visible light absorption spectroscopy. Rat myocardial cells (H9C2) were exposed to GO or rGO with different absorbed radiation doses. The in vitro cytotoxicity was evaluated by MTT assay, cell apoptosis assay, and lactate dehydrogenase (LDH) activity assay. The effects of GO and rGO on oxidative damage and mitochondrial membrane potential were also explored in H9C2 cells. For in vivo experiments, mice were injected with GO or rGO. The histopathological changes of heart tissues, as well as myocardial enzyme activity and lipid peroxidation indicators in heart tissues were further investigated.ResultsrGO was developed from GO following different doses of gamma irradiation. In vitro experiments in H9C2 cells showed that compared with control cells, both GO and rGO treatment inhibited cell viability, promoted cell apoptosis, and elevated the LDH release. With the increasing radiation absorbed dose, the cytotoxicity of rGO gradually increased. Notably, GO or rGO treatment increased the content of ROS and reduced the mitochondrial membrane potential in H9C2 cells. In vivo experiments also revealed that GO or rGO treatment damaged the myocardial tissues and changed the activities of several myocardial enzymes and the lipid peroxidation indicators in the myocardial tissues.ConclusionGO exhibited a lower cardiotoxicity than rGO due to the structure difference, and the cardiotoxicity of GO and rGO might be mediated by lipid peroxidation, oxidative stress, and mitochondrial dysfunction.

2021 ◽  
Author(s):  
Kai Zhu ◽  
Song Guo ◽  
Guoyi Han ◽  
Xiancheng Qiang ◽  
Mengmeng Ma ◽  
...  

Abstract Oxidative stress in the intervertebral disc leads to nucleus pulposus (NP) degeneration by inducing cell apoptosis. However, the molecular mechanisms underlying this process remain unclear. Increasing evidence indicates that GSK-3β is related to cell apoptosis induced by oxidative stress. In this study, we explored whether GSK-3β inhibition protects human NP cell against apoptosis under oxidative stress. Immunofluorescence staining was used to show the expression of GSK-3β in human NP cells (NPCs). Flow cytometry, mitochondrial staining and western blot were used to detect apoptosis of treated NPCs, changes of mitochondrial membrane potential and the expression of mitochondrial apoptosis-related proteins using GSK-3β specific inhibitor SB216763. Coprecipitation was used to demonstrate the interaction between GSK-3β and Bcl-2 in an GSK-3β knockdown in vitro model. We delineated the protective effect of GSK-3β specific inhibitor SB216763 on human NP cell apoptosis induced by oxidative stress in vitro. Further, we showed SB216763 exert the protective effect by preservation of the mitochondrial membrane potential and inhibition of caspase 3/7 activity during oxidative injury. The detailed mechanism underlying the antiapoptotic effect of GSK-3β inhibition was also studied by analyzing mitochondrial apoptosis pathway in vitro. We concluded that the GSK-3β inhibitor SB216763 protected mitochondrial membrane potential to delay nucleus pulposus cell apoptosis by inhibiting the interaction between GSK-3β and Bcl-2 and subsequently reducing Cyto-C release and caspase-3 activation. Together, inhibition of GSK-3β using SB216763 in NP may be a favorable therapeutic strategy to slow intervertebral disc degeneration.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Konstantin G. Lyamzaev ◽  
Alisa A. Panteleeva ◽  
Anna A. Karpukhina ◽  
Ivan I. Galkin ◽  
Ekatherina N. Popova ◽  
...  

A new mitochondria-targeted probe MitoCLox was designed as a starting compound for a series of probes sensitive to cardiolipin (CL) peroxidation. Fluorescence microscopy reported selective accumulation of MitoCLox in mitochondria of diverse living cell cultures and its oxidation under stress conditions, particularly those known to cause a selective cardiolipin oxidation. Ratiometric fluorescence measurements using flow cytometry showed a remarkable dependence of the MitoCLox dynamic range on the oxidation of the sample. Specifically, MitoCLox oxidation was induced by low doses of hydrogen peroxide or organic hydroperoxide. The mitochondria-targeted antioxidant 10-(6′-plastoquinonyl)decyltriphenyl-phosphonium (SkQ1), which was shown earlier to selectively protect cardiolipin from oxidation, prevented hydrogen peroxide-induced MitoCLox oxidation in the cells. Concurrent tracing of MitoCLox oxidation and membrane potential changes in response to hydrogen peroxide addition showed that the oxidation of MitoCLox started without a delay and was complete during the first hour, whereas the membrane potential started to decay after 40 minutes of incubation. Hence, MitoCLox could be used for splitting the cell response to oxidative stress into separate steps. Application of MitoCLox revealed heterogeneity of the mitochondrial population; in living endothelial cells, a fraction of small, rounded mitochondria with an increased level of lipid peroxidation were detected near the nucleus. In addition, the MitoCLox staining revealed a specific fraction of cells with an increased level of oxidized lipids also in the culture of human myoblasts. The fraction of such cells increased in high-density cultures. These specific conditions correspond to the initiation of spontaneous myogenesis in vitro, which indicates that oxidation may precede the onset of myogenic differentiation. These data point to a possible participation of oxidized CL in cell signalling and differentiation.


2021 ◽  
Vol 7 (2) ◽  
pp. 130
Author(s):  
Nathan P. Wiederhold

Invasive infections caused by Candida that are resistant to clinically available antifungals are of increasing concern. Increasing rates of fluconazole resistance in non-albicans Candida species have been documented in multiple countries on several continents. This situation has been further exacerbated over the last several years by Candida auris, as isolates of this emerging pathogen that are often resistant to multiple antifungals. T-2307 is an aromatic diamidine currently in development for the treatment of invasive fungal infections. This agent has been shown to selectively cause the collapse of the mitochondrial membrane potential in yeasts when compared to mammalian cells. In vitro activity has been demonstrated against Candida species, including C. albicans, C. glabrata, and C. auris strains, which are resistant to azole and echinocandin antifungals. Activity has also been reported against Cryptococcus species, and this has translated into in vivo efficacy in experimental models of invasive candidiasis and cryptococcosis. However, little is known regarding the clinical efficacy and safety of this agent, as published data from studies involving humans are not currently available.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Junqiang Yan ◽  
Hongxia Ma ◽  
Xiaoyi Lai ◽  
Jiannan Wu ◽  
Anran Liu ◽  
...  

Abstract Background Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. The oxidative stress is an important component of the pathogenesis of PD. Artemisinin (ART) has antioxidant and neuroprotective effects. The purpose of this study is to explore the neuroprotective effect of ART on 1-methyl-4-phenyliodine iodide (MPP +)-treated SH-SY5Y cells and underlying mechanism. Methods We used MPP+-treated SH-SY5Y cells to study the neuroprotective effect of ART. Cell viability was measured by MTT assay after incubating the cells with MPP+ and/or ART for 24 h. DCFH-DA was used to detect the level of intracellular reactive oxygen species (ROS), and WST-8 was used to detect the level of superoxide dismutase (SOD). The level of intracellular reduced glutathione (GSH) was detected with 5,5΄-dithiobis-(2-nitrobenzoic acid), and the level of malondialdehyde (MDA) was assessed based on the reaction of MDA and thiobarbituric acid. A mitochondrial membrane potential detection kit (JC-1) was used to detect changes in the mitochondrial membrane potential (MMP), and an Annexin V-FITC cell apoptosis kit was used to detect cell apoptosis. The expression levels of caspase-3, cleaved caspase-3 and the autophagy-related proteins LC3, beclin-1, and p62 were detected by Western blotting. In addition, to verify the change in autophagy, we used immunofluorescence to detect the expression of LC3 and p62. Results No significant cytotoxicity was observed at ART concentrations up to 40 μM. ART could significantly increase the viability of SH-SY5Y cells treated with MPP+ and reduce oxidative stress damage and apoptosis. In addition, the Western blotting and immunofluorescence results showed that MPP+ treatment could increase the protein expression of beclin1 and LC3II/LC3I and decrease the protein expression of p62, indicating that MPP+ treatment could induce autophagy. Simultaneous treatment with ART and MPP+ could decrease the protein expression of beclin1 and LC3II/LC3I and increase the protein expression of p62, indicating that ART could decrease the level of autophagy induced by MPP+. Conclusion Our results indicate that ART has a protective effect on MPP+-treated SH-SY5Y cells by the antioxidant, antiapoptotic activities and inhibition of autophagy. Our findings may provide new hope for the prevention and treatment of PD.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yinghong Zhou ◽  
Xiaofeng Dong ◽  
Peng Xiu ◽  
Xin Wang ◽  
Jianrong Yang ◽  
...  

Hepatocellular carcinoma (HCC) is regarded as a leading cause of cancer-related deaths, and its progression is associated with hypoxia and the induction of hypoxia-inducible factor (HIF). Meloxicam, a selective cyclooxygenase-2 (COX-2) inhibitor, induces cell death in various malignancies. However, the underlying mechanism remains to be elucidated in HCC, especially under hypoxic conditions. The alteration of COX-2 and HIF-1α oncogenicity was evaluated in HCC specimens by tissue microarray. Cell viability, angiogenesis assays, and xenografted nude mice were used to evaluate the effects of meloxicam, along with flow cytometry to detect the cell cycle, apoptosis, and mitochondrial membrane potential (ΔΨm) of HCC. qRT-PCR, Western blotting, immunofluorescence, immunohistochemistry, luciferase assay, and RNAi were carried out to determine the HIF-1α signaling affected by meloxicam. In this study, we showed that meloxicam exerts antiproliferative and antiangiogenesis efficacy in vitro and in vivo and causes disruption of mitochondrial membrane potential (ΔΨm), thus leading to caspase-dependent apoptosis under hypoxic environments. Exposure to meloxicam significantly reduced HIF-1α transcriptional activation and expression through sequestering it in the cytoplasm and accelerating degradation via increasing the von Hippel-Lindau tumor suppressor protein (pVHL) in HCC. These data demonstrated that inhibition of HIF-1α by meloxicam could suppress angiogenesis and enhance apoptosis of HCC cells. This discovery highlights that COX-2 specific inhibitors may be a promising therapy in the treatment of HCC.


Zygote ◽  
2019 ◽  
Vol 27 (4) ◽  
pp. 203-213 ◽  
Author(s):  
Anima Tripathi ◽  
Vivek Pandey ◽  
A.N. Sahu ◽  
Alok K. Singh ◽  
Pawan K. Dubey

SummaryThe present study investigated if the presence of encircling granulosa cells protected against di(2-ethylhexyl)phthalate (DEHP)-induced oxidative stress in rat oocytes cultured in vitro. Denuded oocytes and cumulus–oocyte complexes (COCs) were treated with or without various doses of DEHP (0.0, 25.0, 50.0, 100, 200, 400 and 800 μM) in vitro. Morphological apoptotic changes, levels of oxidative stress and reactive oxygen species (ROS), mitochondrial membrane potential, and expression levels of apoptotic markers (Bcl2, Bax, cytochrome c) were analyzed. Our results showed that DEHP induced morphological apoptotic changes in a dose-dependent manner in denuded oocytes cultured in vitro. The effective dose of DEHP (400 µg) significantly (P>0.05) increased oxidative stress by elevating ROS levels and the mitochondrial membrane potential with higher mRNA expression and protein levels of apoptotic markers (Bax, cytochrome c). Encircling granulosa cells protected oocytes from DEHP-induced morphological changes, increased oxidative stress and ROS levels, as well as increased expression of apoptotic markers. Taken together our data suggested that encircling granulosa cells protected oocytes against DEHP-induced apoptosis and that the presence of granulosa cells could act positively towards the survival of oocytes under in vitro culture conditions and may be helpful during assisted reproductive technique programmes.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Kun Liu ◽  
Fei Wang ◽  
Shuo Wang ◽  
Wei-Nan Li ◽  
Qing Ye

The aim of this study was to investigate the cardioprotective effect of mangiferin (MAF) in vitro and in vivo. Oxidative stress and inflammatory injury were detected in coronary artery ligation in rats and also in hypoxia-reoxygenation- (H/R-) induced H9c2 cells. MAF inhibited myocardial oxidative stress and proinflammatory cytokines in rats with coronary artery occlusion. The ST segment of MAF treatment groups also resumed. Triphenyltetrazolium chloride (TTC) staining and pathological analysis showed that MAF could significantly reduce myocardial injury. In vitro data showed that MAF could improve hypoxia/reoxygenation- (H/R-) induced H9c2 cell activity. In addition, MAF could significantly reduce oxidative stress and inflammatory pathway protein expression in H/R-induced H9c2 cells. This study has clarified the protective effects of MAF on myocardial injury and also confirmed that oxidative stress and inflammation were involved in the myocardial ischemia-reperfusion injury (I/R) model.


2012 ◽  
Vol 24 (1) ◽  
pp. 199
Author(s):  
S. Di Francesco ◽  
M. Rubessa ◽  
L. Boccia ◽  
M. De Blasi ◽  
P. Stiuso ◽  
...  

In vitro-produced embryos are less viable than their in vivo counterparts. It is known that the developmental speed is a reliable marker of embryo viability. One of the major factors impairing in vitro embryo development is oxidative stress. The aim of the study was to evaluate oxidative stress and lipid peroxidation in bovine in vitro-produced embryos that reached different developmental stages at the end of culture. Abattoir-derived oocytes were matured in vitro in TCM-199 with 15% bovine serum, 0.5 μg mL–1 of FSH, 5 μg mL–1 of LH, 0.8 mM L-glutamine and 50 mg mL–1 of gentamicin. Mature cumulus–oocyte complexes (COC) were fertilized in Tyrode's modified medium, supplemented by 5.3 SI mL–1 of heparin, 30 μM penicillamine, 15 μM hypotaurine, 1 μM epinephrine and 1% of bovine serum. Both in vitro maturation and IVF were carried out at 39°C and 5% CO2 in air. After 20 to 22 h of gamete co-incubation, presumptive zygotes were denuded and cultured in SOF for 7 days at 39°C under humidified air with 5% CO2, 7% O2 and 88% N2 in air. At the end of culture, embryos were assessed according to the stage of development as tight morulae (TM), early blastocysts (eBl), blastocysts (Bl), expanded blastocysts (XBl) and hatched blastocysts (HBl). For each stage of development, an average of 20 embryos were used to determine manganese superoxide dismutase (MnSOD) activity and levels of nitric oxide (NO2–) and thiobarbituric acid-reactive substances (TBARS). The SOD activity was determined by a colourimetric method (Caraglia M et al. 2011 Cell Death Dis. 2, 150, doi:10.1038/cddis.2011.34) whereas NO2– and TBARS were measured by a spectrophotometric method (Balestrieri et al. 2011 J. Cell. Physiol. doi:10.1002/jcp.22874). Data were analysed by t-test. Greater (P < 0.05) MnSOD activity was observed in faster developing embryos (i.e. XBl and HBl) compared with slower ones (i.e. TM, eBl and Bl; 0.46 ± 0.04, 0.46 ± 0.03, 0.14 ± 0.01, 1.66 ± 0.01 and 3.26 ± 0.3 U μg–1 of protein, in TM, eBl, Bl, XBl and HBl, respectively). At the same time, XBl and HBl showed the lowest NO2– levels. However, NO2– values were lower in TM compared with eBl and Bl (0.04 ± 0.002, 0.07 ± 0.005, 0.06 ± 0.003, 0.01 ± 0.002 and 0.01 ± 0.001 nM μg–1 of protein, in TM, eBl, Bl, XBl and HBl, respectively). Similarly to NO2–, TBARS levels were lower in XBl and HBl compared with the other stages (0.0059 ± 0.002, 0.009 ± 0.003, 0.006 ± 0.002, 0.001 ± 0.0001 and 0.0009 ± 0.0002 μM μg–1 of protein, in TM, eBl, Bl, XBl and HBl, respectively). In conclusion, these results clearly indicate developmental stage-dependent changes in MnSOD activity and levels of NO2– and TBARS, suggesting that oxidative stress and lipid peroxidation are reduced in faster developing embryos.


2018 ◽  
Vol 30 (1) ◽  
pp. 174
Author(s):  
Y.-J. Niu ◽  
N.-H. Kim ◽  
X.-S. Cui

C-Phycocyanin (CP) is a biliprotein enriched in blue-green algae that is known to possess antioxidant, anti-apoptosis, anti-inflammatory, and radical-scavenging properties in somatic cells. However, the protective effect of CP on porcine embryo developmental competence in vitro remains unclear. In the present study, we investigated the effect of CP on the development of porcine early embryos as well as its underlying mechanisms exposing them to H2O2 to induce oxidative stress. The levels of reactive oxygen species, mitochondrial membrane potential, apoptosis, DNA damage, and autophagy in the blastocysts were observed by staining with 2′,7′-dichlorodihydrofluorescein diacetate (H2DCF-DA), 5,5′,6,6’-tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide (JC-1), terminal deoxynucleotidyl transferase-mediated 2′-deoxyuridine 5′-triphosphate (dUTP) nick-end labelling (TUNEL), anti-cytochrome c, and anti-γH2A.X (Ser139), respectively. Colocalization assay of mitochondria and cytochrome c of blastocysts were staining with MitoTracker Red CMXRos and anti-cytochrome c. All data were subjected to one-way ANOVA. Different concentrations of CP (1, 2, 5, 8, 10 µg mL−1) were added to porcine zygote medium 5 (PZM-5, l-glutamine concentration of PZM-3 was modified from 1 to 2 mM) during in vitro culture. The results showed that 5 µg mL−1 CP significantly increased blastocyst formation (62.5 ± 2.1 v. 52.7 ± 2.4; P < 0.05) and hatching rate (10.9 ± 1.9 v. 36.6 ± 5.2; P < 0.05) compared with controls. Blastocyst formation (53.1 ± 2.3 v. 40.1 ± 2.3; P < 0.05) and quality were significantly increased in the 50 µM H2O2 treatment group following 5 µg mL−1 CP addition. C-Phycocyanin prevented the H2O2-induced compromise of mitochondrial membrane potential, release of cytochrome c from the mitochondria, and generation of reactive oxygen species. Furthermore, apoptosis, DNA damage level, and autophagy in the blastocysts were attenuated by supplementation of CP in the H2O2-induced oxidative injury group compared with that in controls. These results suggest that CP has beneficial effects on the development of porcine parthenotes by attenuating mitochondrial dysfunction and oxidative stress.


Zygote ◽  
2019 ◽  
Vol 28 (1) ◽  
pp. 59-64
Author(s):  
Yuhan Zhao ◽  
Yongnan Xu ◽  
Yinghua Li ◽  
Qingguo Jin ◽  
Jingyu Sun ◽  
...  

SummaryKaempferol (KAE) is one of the most common dietary flavonols possessing biological activities such as anticancer, anti-inflammatory and antioxidant effects. Although previous studies have reported the biological activity of KAE on a variety of cells, it is not clear whether KAE plays a similar role in oocyte and embryo in vitro culture systems. This study investigated the effect of KAE addition to in vitro maturation on the antioxidant capacity of embryos in porcine oocytes after parthenogenetic activation. The effects of kaempferol on oocyte quality in porcine oocytes were studied based on the expression of related genes, reactive oxygen species, glutathione and mitochondrial membrane potential as criteria. The rate of blastocyst formation was significantly higher in oocytes treated with 0.1 µm KAE than in control oocytes. The mRNA level of the apoptosis-related gene Caspase-3 was significantly lower in the blastocysts derived from KAE-treated oocytes than in the control group and the mRNA expression of the embryo development-related genes COX2 and SOX2 was significantly increased in the KAE-treated group compared with that in the control group. Furthermore, the level of intracellular reactive oxygen species was significantly decreased and that of glutathione was significantly increased after KAE treatment. Mitochondrial membrane potential (ΔΨm) was increased and the activity of Caspase-3 was significantly decreased in the KAE-treated group compared with that in the control group. Taken together, these results suggested that KAE is beneficial for the improvement of embryo development by inhibiting oxidative stress in porcine oocytes.


Sign in / Sign up

Export Citation Format

Share Document