scholarly journals Stability analysis of rock slope and calculation of rock lateral pressure in foundation pit with structural plane and cave development

Author(s):  
Jin Xu ◽  
Yansen Wang

Abstract In this study, numerical simulations were carried out to analyze the influence of caves in different positions and shapes, in combination with structural planes, on the stability of the slope and the failure characteristics of a rock slope in a deep foundation pit with high inclination structural planes and cave development. The schemes for substituting a single karst cave for karst caves were constructed. Based on the penetration failure characteristics of karst caves between parallel structural planes, methods for calculating the safety factor of the rock foundation pit and the upper bound of the lateral pressure of the supporting structure under the combined influence of the caves and structural planes were developed, which can be used to assess the safety factor of a rock mass and to calculate the lateral pressure under complex geological conditions.

2013 ◽  
Vol 405-408 ◽  
pp. 373-377
Author(s):  
Jing Wang ◽  
Feng Ming Sun ◽  
Jin You Chen ◽  
Chang Jie Xu

Aiming at a deep foundation pit in soil-rock composition with weak intercalated layers, in this paper, using the limit-balance method and finite element method to analyze the stability and deformation. The safety factor of foundation pit under the absence of retaining is much less than 1 through the limit-balance method, but through some retaining measures can guarantee its safety. According to the excavation of the foundation pit in special geological conditions, it takes pile-anchor retaining structure in upper and soil nailing in the lower part. Using the finite element to carry out dynamic simulation for the whole project, the results show that: this form of retaining can be very good to ensure the excavation of the foundation pit in the geological conditions, and it may be helpful for similar projects


2013 ◽  
Vol 838-841 ◽  
pp. 203-208
Author(s):  
Jie Chen ◽  
Dong Wang ◽  
Chun Lei Feng

This paper analyses the problem of locking value of anchor cable of pile anchor supporting of a deep foundation pit in the north of Kunming city. There are many influencing factors of locking value of anchor cable such as relaxation loss of anchor cable materials, tensioning system, pre-stress loss caused by anchorage friction, geological conditions and so on. And the author put forward the corresponding treatment measures for achieving the stability of supporting structure.


2012 ◽  
Vol 164 ◽  
pp. 414-417
Author(s):  
Jia Ming Han

Commonly used finite element strength reduction to calculate the safety factor of slope,to analyze the stability of the slope[1~3]. Recently it also proposed the methods to evaluate the safety factor for the stability of surrounding rock of underground chambers and supporting structural mechanics[4~6]. For Qinling Mountains of the complex geological conditions in the Maanziliang highway tunnel, this article use the finite element method from the bolt resist tension, bolt length, the force of sprayed layer of concrete to computing gradeⅤsurrounding rock section of primary support safety factor, to give evaluation to support mechanics of the Maanziliang tunnel.


2011 ◽  
Vol 261-263 ◽  
pp. 1809-1813
Author(s):  
Jin Biao Chen ◽  
Qiang Hu ◽  
Yuan Wu Zhou

The excavation of deep foundation pit is very complex in the field of geotechnical engineering, how to control the deformation of deep foundation pit and protect the environment is of great significance. This paper analyzed the deformation mechanism of pile-anchor joint supporting structure in detail, established a model for deformation controlling based on the reliability theory, and then analyzed the sensitivities of prestressed, pile stiffness, spacing and soil properties to foundation deformation. Combined with an engineering example, this paper verifies the stability and effectiveness of the model for deformation controlling. This study will provide some reference to similar projects.


2014 ◽  
Vol 580-583 ◽  
pp. 787-790
Author(s):  
Hai Xia Sun ◽  
Ke Zhang ◽  
Si Li Chen

This article mainly expounds the importance of in-situ monitoring on the construction process of deep foundation pit. Taking the deep foundation pit of some Shenyang metro station for example, the deformation features of the supporting structure and the internal and external of foundation pit is analyzed, according to the monitoring data of the fender pile displacement during the excavation of deep foundation pit. The conclusion is obtained that the timely and accurate in-situ monitoring information is necessary to guaranteeing construction safety. We should pay more attention to the excavation speed and exert the interior support timely during the excavation of foundation pit to avoid large deformation and danger. The analytical results of monitoring data shows that the whole stage of foundation pit excavation is stable and the fender pile with internal supports can guarantee the stability of foundation pit.


2011 ◽  
Vol 142 ◽  
pp. 243-246
Author(s):  
Rong Jian Li ◽  
Hao Duan ◽  
Wen Zheng ◽  
Hai Tao Li

The non-uniform distribution of matric suction in the unsaturated soil has a great impact on the stability of the unsaturated soil foundation pit. By means of the strength reduction finite element method, the stability of the unsaturated soil foundation pit reinforced with the cement-mixed sheet pile wall was analyzed. The overall safety factor of the unsaturated soil foundation pit reinforced with the cement-mixed sheet pile wall is greatly reduced and the position of potential sliding surface goes upward with the gradually decreasing of matric suction. With the constant height of the cement-mixed sheet pile wall, the shallower the embedding depth of the cement-mixed sheet pile wall is, the smaller the safety factor of the foundation pit slope is. The results show that the safety factor of the overall stability of the unsaturated soil foundation pit decreases with the deep excavation and the gradually decreasing of the matric suction.


2013 ◽  
Vol 438-439 ◽  
pp. 588-592
Author(s):  
Kai Yun Yang ◽  
Xiang Yu Li ◽  
Lin Hao Li ◽  
Quan Long Li

In view of the problems of complex geological conditions with high underground water level, large permeability coefficient of soil and the presence of large seepage hazard of deep cut canal and deep foundation pit project of South-to-North Water Transfer Project, China, research on seepage characteristics of digging canals under dewatering well is carried out by finite element analysis, and the FORTRAN procedure is programmed. The three-dimensional finite element model of a digging canal is built, and the seepage field of the different conditions of the canal is simulated, the water head distribution, saturation line and leakages are obtained, and the rules and characteristics of steady seepage field under design impervious system are analyzed. The results indicate that the method can exactly determine the key overflow point and saturation line of canal, and well predict seepage field in canal. The results should be of guiding significance to design and construct retaining engineering in deep cut canal and deep foundation pit.


2013 ◽  
Vol 441 ◽  
pp. 286-290
Author(s):  
Yu Lin Yuan ◽  
Yun Feng Peng

According to the geological conditions of upstream cofferdam and foundation of the hydropower station, analysis for the seepage of the upstream cofferdam used SEEP/W module of Geo-studio software. Analysis for the stability used SLOPE/W module with Swedish circle method and Bishop method. Safety factor of the upstream and downstream in different conditions was obtained. The results show that the design of the upstream cofferdam was reasonable, and it will provide theoretical basis for Seepage control design of cofferdam.


Sign in / Sign up

Export Citation Format

Share Document