scholarly journals Nanometric transverse displacement metrology in range of hundreds of micrometers with polarization-encoded metasurface

Author(s):  
Haofeng Zang ◽  
Zheng Xi ◽  
Zhiyu Zhang ◽  
Yonghua Lu ◽  
Pei Wang

Abstract A long range, high precision and compact transverse displacement metrology method is of crucial importance in many research areas. We propose and experimentally demonstrate the first prototype polarization-encoded metasurface for ultrasensitive transverse displacement metrology. The transverse displacement of the metasurface is encoded into the polarization direction of the outgoing light via the Pancharatnam-Berry phase. By measuring the output light polarization direction, the metasurface’s position can be readout directly according to the Malus law. We experimentally demonstrate nanometer displacement resolution with the uncertainty on the order of 100 pm for a large measurement range of 200 µm with the total area of the metasurface being within 900 µm x 900 µm. The measurement range can be extended further using a larger metasurface. Our work largely broadens the existing application areas of metasurface and opens new avenue of applying metasurface in the field of ultrasensitive optical transverse displacement metrology.

2016 ◽  
Vol 36 (1) ◽  
pp. 0105003 ◽  
Author(s):  
司新春 Si Xinchun ◽  
唐燕 Tang Yan ◽  
胡松 Hu Song ◽  
刘俊伯 Liu Junbo ◽  
程依光 Cheng Yiguang ◽  
...  

2013 ◽  
Vol 303-306 ◽  
pp. 124-127
Author(s):  
Bing Tao Lin ◽  
Jian Hua Zhao ◽  
Wen Yun Li ◽  
Qian Zhou ◽  
Xin Man ◽  
...  

A digital closed-loop control quartz accelerometer with new structures is performed, which overcomes the disadvantages of restriction of measurement range and sensitivity of QVBA (quartz vibrating beam accelerometer). It has not only the same precision as QVBA in theory, but also large measurement range without reducing the sensitivity. The accelerometer is proposed to be used in large range and high-precision measurement of acceleration.


2007 ◽  
Vol 364-366 ◽  
pp. 371-376 ◽  
Author(s):  
Jian Ping Yun ◽  
Ling Ling Zhang ◽  
Tie Bang Xie ◽  
Guo Yuan Hu

We have constructed a novel contact stylus profilometer which is, in a certain sense, a combination of a lever system, an x-y stage, a vertical scanning stage and a Linnik microscope interferometer with a spatially and temporally incoherent light source. The system has large measurement range, high precision and small touch force. Its vertical measuring range is ±5 mm with a resolution below 2 nm, and the horizontal measuring range is ±25 mm in x- and y-range with a resolution of 1.25 μm. This paper describes the system and its performance along with results of measuring some samples.


2020 ◽  
pp. 3-8
Author(s):  
L.F. Vitushkin ◽  
F.F. Karpeshin ◽  
E.P. Krivtsov ◽  
P.P. Krolitsky ◽  
V.V. Nalivaev ◽  
...  

The State special primary acceleration measurement standard for gravimetry (GET 190-2019), its composition, principle of operation and basic metrological characteristics are presented. This standard is on the upper level of reference for free-fall acceleration measurements. Its accuracy and reliability were improved as a result of optimisation of the adjustment procedures for measurement systems and its integration within the upgraded systems, units and modern hardware components. A special attention was given to adjusting the corrections applied to measurement results with respect to procedural, physical and technical limitations. The used investigation methods made it possibled to confirm the measurement range of GET 190-2019 and to determine the contributions of main sources of errors and the total value of these errors. The measurement characteristics and GET 90-2019 were confirmed by the results obtained from measurements of the absolute value of the free fall acceleration at the gravimetrical site “Lomonosov-1” and by their collation with the data of different dates obtained from measurements by high-precision foreign and domestic gravimeters. Topicality of such measurements ensues from the requirements to handle the applied problems that need data on parameters of the Earth gravitational field, to be adequately faced. Geophysics and navigation are the main fields of application for high-precision measurements in this field.


2021 ◽  
Author(s):  
Zeina ELRAWASHDEH ◽  
Philippe REVEL ◽  
Christine PRELLE ◽  
Frédéric LAMARQUE

Abstract This research study presents the design and the high precision manufacture procedure of a fiber-optic displacement sensor. It is composed of two fiber-optic probes associated with a structure of a cones’ grating. The sensor is characterized by its ability to measure the linear displacement for an axis performing a helicoidal motion. This motion has been demonstrated on a high precision lathe; where the spindle provided the rotational motion, associated to a translational motion on the linear stage. This allowed to obtain the two simultaneous motions. The displacement of the translational stage is measured by the sensor in real time.Firstly, a highly precise geometric model of the reflector part for the sensor was developed. This model provided a specific geometry for the cones-assembled grating, which has been precisely manufactured. The geometric parameters and the surface characteristics of each step in the fabricated grating were both identified in situ on the lathe. The agreement between simulation and experimental results is excellent. The performances of the fiber-optic displacement sensor were identified in-situ on the lathe. The analysis of the voltage output signals from the two fiber-optic probes is used to measure the grating displacement. The unbalanced rotation due to non-centered axes was also characterized. The sensor provided a micrometric resolution, on a measurement range of more than one centimeter.


2019 ◽  
Vol 65 (6) ◽  
pp. 711-715
Author(s):  
Yu. N. Morgunov ◽  
A. A. Golov ◽  
S. I. Kamenev ◽  
Yu. V. Matvienko
Keyword(s):  

Micromachines ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 730 ◽  
Author(s):  
Xiaozhou Lü ◽  
Liang Qi ◽  
Hanlun Hu ◽  
Xiaoping Li ◽  
Guanghui Bai ◽  
...  

Flexible tactile sensor can be integrated into artificial skin and applied in industrial robot and biomedical engineering. However, the presented tactile sensors still have challenge in increasing sensitivity to expand the sensor’s application. Aiming at this problem, this paper presents an ultra-sensitive flexible tactile sensor. The sensor is based on piezoresistive effect of graphene film and is composed of upper substrate (PDMS bump with a size of 5 mm × 7 mm and a thickness of 1 mm), medial Graphene/PET film (Graphene/PET film with a size of 5 mm × 7 mm, PET with a hardness of 2H) and lower substrate (PI with fabricated electrodes). We presented the structure and reduced the principle of the sensor. We also fabricated several sample devices of the sensor and carried out experiment to test the performance. The results show that the sensor performed an ultra high sensitivity of 10.80/kPa at the range of 0–4 kPa and have a large measurement range up to 600 kPa. The sensor has 4 orders of magnitude between minimum resolution and maximum measurement range which have great advantage compared with state of the art. The sensor is expected to have great application prospect in robot and biomedical.


Sign in / Sign up

Export Citation Format

Share Document