A Contact Stylus Profilometer Based on Linnik Interference Microscope

2007 ◽  
Vol 364-366 ◽  
pp. 371-376 ◽  
Author(s):  
Jian Ping Yun ◽  
Ling Ling Zhang ◽  
Tie Bang Xie ◽  
Guo Yuan Hu

We have constructed a novel contact stylus profilometer which is, in a certain sense, a combination of a lever system, an x-y stage, a vertical scanning stage and a Linnik microscope interferometer with a spatially and temporally incoherent light source. The system has large measurement range, high precision and small touch force. Its vertical measuring range is ±5 mm with a resolution below 2 nm, and the horizontal measuring range is ±25 mm in x- and y-range with a resolution of 1.25 μm. This paper describes the system and its performance along with results of measuring some samples.

2016 ◽  
Vol 36 (1) ◽  
pp. 0105003 ◽  
Author(s):  
司新春 Si Xinchun ◽  
唐燕 Tang Yan ◽  
胡松 Hu Song ◽  
刘俊伯 Liu Junbo ◽  
程依光 Cheng Yiguang ◽  
...  

2013 ◽  
Vol 303-306 ◽  
pp. 124-127
Author(s):  
Bing Tao Lin ◽  
Jian Hua Zhao ◽  
Wen Yun Li ◽  
Qian Zhou ◽  
Xin Man ◽  
...  

A digital closed-loop control quartz accelerometer with new structures is performed, which overcomes the disadvantages of restriction of measurement range and sensitivity of QVBA (quartz vibrating beam accelerometer). It has not only the same precision as QVBA in theory, but also large measurement range without reducing the sensitivity. The accelerometer is proposed to be used in large range and high-precision measurement of acceleration.


2022 ◽  
Author(s):  
Haofeng Zang ◽  
Zheng Xi ◽  
Zhiyu Zhang ◽  
Yonghua Lu ◽  
Pei Wang

Abstract A long range, high precision and compact transverse displacement metrology method is of crucial importance in many research areas. We propose and experimentally demonstrate the first prototype polarization-encoded metasurface for ultrasensitive transverse displacement metrology. The transverse displacement of the metasurface is encoded into the polarization direction of the outgoing light via the Pancharatnam-Berry phase. By measuring the output light polarization direction, the metasurface’s position can be readout directly according to the Malus law. We experimentally demonstrate nanometer displacement resolution with the uncertainty on the order of 100 pm for a large measurement range of 200 µm with the total area of the metasurface being within 900 µm x 900 µm. The measurement range can be extended further using a larger metasurface. Our work largely broadens the existing application areas of metasurface and opens new avenue of applying metasurface in the field of ultrasensitive optical transverse displacement metrology.


2020 ◽  
pp. 3-8
Author(s):  
L.F. Vitushkin ◽  
F.F. Karpeshin ◽  
E.P. Krivtsov ◽  
P.P. Krolitsky ◽  
V.V. Nalivaev ◽  
...  

The State special primary acceleration measurement standard for gravimetry (GET 190-2019), its composition, principle of operation and basic metrological characteristics are presented. This standard is on the upper level of reference for free-fall acceleration measurements. Its accuracy and reliability were improved as a result of optimisation of the adjustment procedures for measurement systems and its integration within the upgraded systems, units and modern hardware components. A special attention was given to adjusting the corrections applied to measurement results with respect to procedural, physical and technical limitations. The used investigation methods made it possibled to confirm the measurement range of GET 190-2019 and to determine the contributions of main sources of errors and the total value of these errors. The measurement characteristics and GET 90-2019 were confirmed by the results obtained from measurements of the absolute value of the free fall acceleration at the gravimetrical site “Lomonosov-1” and by their collation with the data of different dates obtained from measurements by high-precision foreign and domestic gravimeters. Topicality of such measurements ensues from the requirements to handle the applied problems that need data on parameters of the Earth gravitational field, to be adequately faced. Geophysics and navigation are the main fields of application for high-precision measurements in this field.


2021 ◽  
Author(s):  
Xin Chen ◽  
Miao Yan ◽  
Jie Yu ◽  
Ruoxiang Tang

Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1375
Author(s):  
Junji Pu ◽  
Kai Zeng ◽  
Yulie Wu ◽  
Dingbang Xiao

In recent years, the optical accelerometer based on the optical trapping force effect has gradually attracted the attention of researchers for its high sensitivity and high measurement accuracy. However, due to its large size and the complexity of optical path adjustment, the optical force accelerometers reported are only suitable for the laboratory environment up to now. In this paper, a miniature optical force dual-axis accelerometer based on the miniature optical system and a particles cavity which is prepared by Micro-Electro-Mechanical Systems (MEMS) technology is proposed. The overall system of the miniature optical levitation including the miniature optical system and MEMS particles cavity is a cylindrical structure with a diameter of about 10 mm and a height of 33 mm (Φ 10 mm × 33 mm). Moreover, the size of this accelerometer is 200 mm × 100 mm × 100 mm. Due to the selected light source being a laser diode light source with elliptical distribution, it is sensitive to the external acceleration in both the long axis and the short axis. This accelerometer achieves a measurement range of ±0.17 g–±0.26 g and measurement resolution of 0.49 mg and 1.88 mg. The result shows that the short-term zero-bias stability of the two orthogonal axes of the optical force accelerometer is 4.4 mg and 9.2 mg, respectively. The main conclusion that can be drawn is that this optical force accelerometer could provide an effective solution for measuring acceleration with an optical force effect for compact engineering devices.


Sign in / Sign up

Export Citation Format

Share Document