scholarly journals Production and Characterization of Novel Board-spectrum Antimicrobial 5-butyl-2-pyridine carboxylic acid from Aspergillus fumigatus nHF-01

Author(s):  
Vivekananda Mandal ◽  
Narendra Nath Ghosh ◽  
Prashanta Kumar Mitra ◽  
Sukhendu Mandal ◽  
Vivekananda Mandal

Abstract Objectives: The present study aims to report on the production optimization, purification, and characterization of structural and functional attributes of a novel broad-spectrum antibacterial compound produced by Aspergillus fumigatus nHF-01 (GenBank Ac. No. MN190286).Materials and Methods: The culture conditions were optimized by using rigorous culture-set preparation considering various abiotic and biotic factors for a higher amount of antimicrobial production. The produced antimicrobial was solvent extracted and purified by preparative TLC and HPLC methods followed by characterization using UV-Vis, FT-IR, ESI-MS, and 1H-NMR spectroscopy. The MIC and MBC of the antimicrobials were determined against a set of Gram-positive and Gram-negative human pathogenic bacteria. The mode of action on cellular morphology and integrity were determined by LDH and SEM studies. Its biofilm-inhibition properties and synergistic activity with antibiotics were studied. The possible cytotoxic effect on human cell lines was also tested by MTT assay. The putative target site of action was evaluated through in silico molecular docking study. Results: The micro-fungus A. fumigatus nHF-01 produced the maximum antibacterial compound while grown in a combination of 2% MEB (w/v) and 4% YE (w/v) at pH 6.0 and 20 °C temperature with 100 rpm agitation for ten days. The DCM extractable crude compound has a potent growth inhibition against the target human food and topical pathogenic bacteria at a 15 mg/ml concentration and is stable up to 100 °C. The spectroscopic studies confirmed the antimicrobial compound as 5-butyl-2-pyridine carboxylic acid with MIC values from 0.069±0.0034 to 1.12±0.052 mg/ml and from 8.925±0.39 to 17.85±0.78 mg/ml; and MBC values from 8.925±0.40 to 17.85±0.776 mg/ml and from 0.069±0.0034 to 0.139±0.0065 mg/ml against human pathogenic Gram-positive and Gram-negative bacteria, respectively. A concentration of 0.139 and 17.85 mg/ml decreased the viability sharply within 15 min of the incubation period with the gradual increase in LDH activity, indicating a robust bactericidal and lytic mode of action. The time-kill kinetics study shows that at a 17.85 mg/ml dose (i.e. MBC), the compound caused zero viability of E. coli and S. epidermidis cells from the initial log CFU/ml 5.78 after 15 h of treatment. It caused a remarkable change in morphology like the formation of blebbing, notch, rupture of the entire cell walls, and entire dissolution of cell integrity at a concentration of 4 µg/ml and 129 µg/ml. It had cytotoxicity against the tested human lung carcinoma A549 cell line. It showed a notable antibiofilm activity at 20 µg/ml and 4 µg/ml comparable to the standard antibiofilm drug usnic acid 10 µg/ml and 64 µg/ml against E. coli and B. cereus. It had a synergistic activity with streptomycin, whereas ciprofloxacin and vancomycin showed additive effects. It showed the highest binding affinities with Quinol-Fumarate Reductase (1l0v), a respiratory enzyme. Conclusion: Thus, the above findings can be concluded that the strain A. fumigatus nHF-01 produces a novel broad-spectrum antimicrobial compound 5-butyl-2-pyridine carboxylic acid with potent bactericidal activity against human food and topical pathogenic bacteria. This is the first report of such a compound from the A. fumigatus.

Author(s):  
Sindhuja S ◽  
Sureshkumar Bt ◽  
Janaki S ◽  
Thenmozhi S

Objective: The objective of this study was to describe the prevalence and molecular characterization of blaCTX-M-15-producing pathogenic Gram-negative bacteria from various clinical samples isolated from clinically suspected patients.Methods: In this study, clinical samples of urine, stool, sputum, and pus were collected from 244 patients with nosocomial infections. The phenotypic identification of extended-spectrum β-lactamases (ESBL) was confirmed by double-disk synergy test and combined disk diffusion test. In vitro, the susceptibility pattern of antimicrobial agents against pathogenic isolates was performed by Kirby–Bauer disk diffusion method. The identification of blaCTX-M-15-producing Escherichia coli was assessed by polymerase chain reaction method.Results: The frequency of ESBL-producing pathogenic bacteria from screened was 6 (46.15%). In vitro, susceptibility to pathogenic bacteria showed that the majority of isolates were highly susceptible to amoxicillin-clavulanic acid (97.87%), ofloxacin (93.33%), and Pseudomonas aeruginosa showed 100% sensitive to ceftazidime, cefotaxime, cefixime, cefoperazone, and meropenem (92.30%). The rates of resistance to other antibiotics varied from <26.66%. Among six tested isolates, only one E. coli isolates showed blaCTX-M-15 gene.Conclusion: Due to the increase of E. coli with multiple ESBL genes, continuous surveillance should be needed in clinical field to use of appropriate antibiotics and the control of infections.


2019 ◽  
Vol 18 (31) ◽  
pp. 2731-2740 ◽  
Author(s):  
Sandeep Tiwari ◽  
Debmalya Barh ◽  
M. Imchen ◽  
Eswar Rao ◽  
Ranjith K. Kumavath ◽  
...  

Background: Mycobacterium tuberculosis, Vibrio cholerae, and pathogenic Escherichia coli are global concerns for public health. The emergence of multi-drug resistant (MDR) strains of these pathogens is creating additional challenges in controlling infections caused by these deadly bacteria. Recently, we reported that Acetate kinase (AcK) could be a broad-spectrum novel target in several bacteria including these pathogens. Methods: Here, using in silico and in vitro approaches we show that (i) AcK is an essential protein in pathogenic bacteria; (ii) natural compounds Chlorogenic acid and Pinoresinol from Piper betel and Piperidine derivative compound 6-oxopiperidine-3-carboxylic acid inhibit the growth of pathogenic E. coli and M. tuberculosis by targeting AcK with equal or higher efficacy than the currently used antibiotics; (iii) molecular modeling and docking studies show interactions between inhibitors and AcK that correlate with the experimental results; (iv) these compounds are highly effective even on MDR strains of these pathogens; (v) further, the compounds may also target bacterial two-component system proteins that help bacteria in expressing the genes related to drug resistance and virulence; and (vi) finally, all the tested compounds are predicted to have drug-like properties. Results and Conclusion: Suggesting that, these Piper betel derived compounds may be further tested for developing a novel class of broad-spectrum drugs against various common and MDR pathogens.


2007 ◽  
Vol 52 (2) ◽  
pp. 580-585 ◽  
Author(s):  
Maria D. M. C. Ribeiro da Silva ◽  
Vera L. S. Freitas ◽  
Luís M. N. B. F. Santos ◽  
Michal Fulem ◽  
M. J. Sottomayor ◽  
...  

2021 ◽  
Author(s):  
Cristina Hernandez Rollan ◽  
Kristoffer Bach Falkenberg ◽  
Maja Rennig ◽  
Andreas Birk Bertelsen ◽  
Morten Norholm

E. coli is a gram-negative bacteria used mainly in academia and in some industrial scenarios, as a protein production workhorse. This is due to its ease of manipulation and the range of genetic tools available. This protocol describes how to express proteins in the periplasm E. coli with the strain BL21 (DE3) using a T7 expression system. Specifically, it describes a series of steps and tips to express "hard-to-express" proteins in E. coli, as for instance, LPMOs. The protocol is adapted from Hemsworth, G. R., Henrissat, B., Davies, G. J., and Walton, P. H. (2014) Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat. Chem. Biol.10, 122–126. .


1969 ◽  
Vol 3 (9) ◽  
pp. 537-539 ◽  
Author(s):  
V. I. Trubnikov ◽  
V. V. Petrov ◽  
E. S. Zhdanovich ◽  
N. A. Preobrazhenskii

2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S235-S235
Author(s):  
Amani Kholy ◽  
Samia A Girgis ◽  
Arwa R Elmanakhly ◽  
Mervat A F Shetta ◽  
Dalia El- Kholy ◽  
...  

Abstract Background High rates of AMR among Gram-negative bacilli (GNB) have been reported from Egypt for almost 2 decades. Surveillance and identifying the genetic basis of AMR provide important information to optimize patient care. As there is no adequate data on the genetic basis of AMR in Egypt, we aimed to identify the molecular characterization of multi-drug-resistant (MDR) Gram-negative pathogens (GNP). Methods Three major tertiary-care hospitals in Egypt participated in the “Study for Monitoring Antimicrobial Resistance Trends” (SMART) from 2014 to 2016. Consecutive GNPs were identified and their susceptibility to antimicrobials were tested. Molecular identification of ESBL, AmpC, and carbapenemase resistance genes was conducted on MDR isolates. Results We enrolled 1,070 consecutive Gram-negative isolates; only one isolate per patient according to the standard protocol of (SMART). During 2014–2015, 578 GNP were studied. Enterobacteriaceae comprised 66% of the total isolates. K. pneumoniae and E. coli were the most common (29.8% and 29.4%). K. pneumoniae and E. coli were the predominant organisms in IAI (30.5% and 30.1%, respectively) and UTI (and 38.9% and 48.6%, respectively), while Acinetobacter baumannii was the most prevalent in RTI (40.2%). ESBL producers were phenotypically detected in 53% of K. pneumoniae, and 68% of E. coli. During 2016, 495 GNP were studied. ESBL continued to be high. For E. coli and K. pneunomiea, the most active antimicrobials were amikacin (≥93%), imipenem/meropenem (≥87%) and colistin (97%). Genetic study of ertapenem-resistant isolates and 50% of isolates with ESBL phenotype revealed ESβL production in more than 90% of isolates; blaCTXM-15 was detected in 71.4% and 68.5% in K. pneumoniae and E. coli, respectively, blaTEM-OSBL in 48.5% and47.5% of K. pneumoniae and E. coli, respectively. Carbapenem resistance genes were detected in 45.4% of isolates. In K. pneumoniae, OXA-48 dominated (40.6%), followed by NDM1 (23.7%) and OXA-232 (4.5%). Conclusion Our study detected alarming rates of resistance and identified many resistance mechanisms in clinical isolates from Egyptian hospitals. These high rates highlight the importance of continuous monitoring of the resistance trend and discovering the novel resistant mechanisms of resistance, and the underscores a national antimicrobial stewardship plan in Egypt. Disclosures All authors: No reported disclosures.


Sign in / Sign up

Export Citation Format

Share Document