scholarly journals Drivers of Microbial Community Structure in Surface Sediment Aross Bohai Sea

Author(s):  
lei chen ◽  
Yuntao Li ◽  
Mingpeng Wang ◽  
Weitao Shang ◽  
Jianhui Tang ◽  
...  

Abstract Background: Microbial spatial distribution has been widely investigated in sediment. However, there is poorly available information on microbial distribution patterns in sediment of Bohai Sea coastal zone. Results: Here, we investigated the bacterial community composition and diversity in riverine and marine surface sediment around and in the Bohai Sea using high-throughput sequencing. Bacterial communities mainly comprised Proteobacteria, Bacteroidetes, and Firmicutes. Salinity, dissolved oxygen, pH, and magnetic susceptibility played the main role in determining bacterial α-diversity and community composition in this region. Of the total bacterial community composition variation, environmental factors (explained 29.41% of the total microbial community composition variation) played a more important role than spatial variables (explained 3.03%) in conditioning the bacterial community composition. Meanwhile, the significantly pure spatial effect and distance-decay tendency suggested that dispersal limitation was also an influential factor in shaping the bacterial biogeographical pattern. The presence of magnetite center might shape the geographical distribution of five genera Lactococcus, Clostridium, Caulobacter, Gillisia and Sphingomonas probably by affecting their iron-related geochemical cycle.Conclusion: Our results may provide a better understanding of present-day bacterial biogeography and the correlation between microbial communities and key environmental variables in a typical coastal area. Depending on these information, coastal resources could be efficiently predicted, assessed and used.

2021 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Lei Chen ◽  
Mingpeng Wang ◽  
Yuntao Li ◽  
Weitao Shang ◽  
Jianhui Tang ◽  
...  

Extensive production and application of magnetic minerals introduces significant amounts of magnetic wastes into the environment. Exposure to magnetic minerals could affect microbial community composition and geographic distribution. Here, we report that magnetic susceptibility is involved in determining bacterial α-diversity and community composition in surface sediment across the Bohai Sea by high-throughput sequencing analysis of the 16S rRNA gene. The results showed that environmental factors (explained 9.80%) played a larger role than spatial variables (explained 6.72%) in conditioning the bacterial community composition. Exposure to a magnetite center may shape the geographical distribution of five dissimilatory iron reducing bacteria. The microbial iron reduction ability and electroactive activity in sediment close to a magnetite center are stronger than those far away. Our study provides a novel understanding for the response of DIRB and electroactive bacteria to magnetic minerals exposure.


2021 ◽  
Author(s):  
Lei Chen ◽  
Mingpeng Wang ◽  
Yuntao Li ◽  
Weitao Shang ◽  
Jianhui Tang ◽  
...  

Abstract Extensive production and application of magnetic minerals produce significant amounts of magnetic wastes to the environment. These magnetic minerals exposure could affect microbial community composition and geographic distribution. Here, we reported magnetic susceptibility is involved in determining bacterial α-diversity and community composition in surface sediment across Bohai Sea. Environmental factors (explained 9.80%) played a larger role than spatial variables (explained 6.72%) in conditioning the bacterial community composition. Exposure of magnetite center may shape geographical distribution of five dissimilatory iron reducing bacteria (DIRB). Microbial iron reduction ability and electroactive activity in sediment close to magnetite center are stronger than those far away. Our study provides novel understanding for response of DIRB and electroactive bacteria to magnetic minerals exposure.


2021 ◽  
Vol 12 (1) ◽  
pp. 157-172
Author(s):  
Shankar G. Shanmugam ◽  
Normie W. Buehring ◽  
Jon D. Prevost ◽  
William L. Kingery

Our understanding on the effects of tillage intensity on the soil microbial community structure and composition in crop production systems are limited. This study evaluated the soil microbial community composition and diversity under different tillage management systems in an effort to identify management practices that effectively support sustainable agriculture. We report results from a three-year study to determine the effects on changes in soil microbial diversity and composition from four tillage intensity treatments and two residue management treatments in a corn-soybean production system using Illumina high-throughput sequencing of 16S rRNA genes. Soil samples were collected from tillage treatments at locations in the Southern Coastal Plain (Verona, Mississippi, USA) and Southern Mississippi River Alluvium (Stoneville, Mississippi, USA) for soil analysis and bacterial community characterization. Our results indicated that different tillage intensity treatments differentially changed the relative abundances of bacterial phyla. The Mantel test of correlations indicated that differences among bacterial community composition were significantly influenced by tillage regime (rM = 0.39, p ≤ 0.0001). Simpson’s reciprocal diversity index indicated greater bacterial diversity with reduction in tillage intensity for each year and study location. For both study sites, differences in tillage intensity had significant influence on the abundance of Proteobacteria. The shift in the soil bacterial community composition under different tillage systems was strongly correlated to changes in labile carbon pool in the system and how it affected the microbial metabolism. This study indicates that soil management through tillage intensity regime had a profound influence on diversity and composition of soil bacterial communities in a corn-soybean production system.


mSystems ◽  
2019 ◽  
Vol 4 (6) ◽  
Author(s):  
Holly L. Lutz ◽  
Elliot W. Jackson ◽  
Paul W. Webala ◽  
Waswa S. Babyesiza ◽  
Julian C. Kerbis Peterhans ◽  
...  

ABSTRACT Recent studies of mammalian microbiomes have identified strong phylogenetic effects on bacterial community composition. Bats (Mammalia: Chiroptera) are among the most speciose mammals on the planet and the only mammal capable of true flight. We examined 1,236 16S rRNA amplicon libraries of the gut, oral, and skin microbiota from 497 Afrotropical bats (representing 9 families, 20 genera, and 31 species) to assess the extent to which host ecology and phylogeny predict microbial community similarity in bats. In contrast to recent studies of host-microbe associations in other mammals, we found no correlation between chiropteran phylogeny and bacterial community dissimilarity across the three anatomical sites sampled. For all anatomical sites, we found host species identity and geographic locality to be strong predictors of microbial community composition and observed a positive correlation between elevation and bacterial richness. Last, we identified significantly different bacterial associations within the gut microbiota of insectivorous and frugivorous bats. We conclude that the gut, oral, and skin microbiota of bats are shaped predominantly by ecological factors and do not exhibit the same degree of phylosymbiosis observed in other mammals. IMPORTANCE This study is the first to provide a comprehensive survey of bacterial symbionts from multiple anatomical sites across a broad taxonomic range of Afrotropical bats, demonstrating significant associations between the bat microbiome and anatomical site, geographic locality, and host identity—but not evolutionary history. This study provides a framework for future systems biology approaches to examine host-symbiont relationships across broad taxonomic scales, emphasizing the need to elucidate the interplay between host ecology and evolutionary history in shaping the microbiome of different anatomical sites.


2014 ◽  
Vol 81 (4) ◽  
pp. 1463-1471 ◽  
Author(s):  
Stefan Thiele ◽  
Bernhard M. Fuchs ◽  
Rudolf Amann ◽  
Morten H. Iversen

ABSTRACTDue to sampling difficulties, little is known about microbial communities associated with sinking marine snow in the twilight zone. A drifting sediment trap was equipped with a viscous cryogel and deployed to collect intact marine snow from depths of 100 and 400 m off Cape Blanc (Mauritania). Marine snow aggregates were fixed and washedin situto prevent changes in microbial community composition and to enable subsequent analysis using catalyzed reporter deposition fluorescencein situhybridization (CARD-FISH). The attached microbial communities collected at 100 m were similar to the free-living community at the depth of the fluorescence maximum (20 m) but different from those at other depths (150, 400, 550, and 700 m). Therefore, the attached microbial community seemed to be “inherited” from that at the fluorescence maximum. The attached microbial community structure at 400 m differed from that of the attached community at 100 m and from that of any free-living community at the tested depths, except that collected near the sediment at 700 m. The differences between the particle-associated communities at 400 m and 100 m appeared to be due to internal changes in the attached microbial community rather thande novocolonization, detachment, or grazing during the sinking of marine snow. The new sampling method presented here will facilitate future investigations into the mechanisms that shape the bacterial community within sinking marine snow, leading to better understanding of the mechanisms which regulate biogeochemical cycling of settling organic matter.


2021 ◽  
Vol 12 ◽  
Author(s):  
Omar Cristobal-Carballo ◽  
Susan A. McCoard ◽  
Adrian L. Cookson ◽  
Siva Ganesh ◽  
Katherine Lowe ◽  
...  

The present study aimed to determine whether dietary supplementation with methanogen inhibitors during early life may lead to an imprint on the rumen microbial community and change the rumen function and performance of calves to 49-weeks of rearing. Twenty-four 4-day-old Friesian x Jersey cross calves were randomly assigned into a control and a treatment group. Treated calves were fed a combination of chloroform (CF) and 9,10-anthraquinone (AQ) in the solid diets during the first 12 weeks of rearing. Afterward, calves were grouped by treatments until week 14, and then managed as a single group on pasture. Solid diets and water were offered ad libitum. Methane measurements, and sample collections for rumen metabolite and microbial community composition were carried out at the end of weeks 2, 4, 6, 8, 10, 14, 24 and 49. Animal growth and dry matter intake (DMI) were regularly monitored over the duration of the experiment. Methane emissions decreased up to 90% whilst hydrogen emissions increased in treated compared to control calves, but only for up to 2 weeks after treatment cessation. The near complete methane inhibition did not affect calves’ DMI and growth. The acetate:propionate ratio decreased in treated compared to control calves during the first 14 weeks but was similar at weeks 24 and 49. The proportions of Methanobrevibacter and Methanosphaera decreased in treated compared to control calves during the first 14 weeks; however, at week 24 and 49 the archaea community was similar between groups. Bacterial proportions at the phylum level and the abundant bacterial genera were similar between treatment groups. In summary, methane inhibition increased hydrogen emissions, altered the methanogen community and changed the rumen metabolite profile without major effects on the bacterial community composition. This indicated that the main response of the bacterial community was not a change in composition but rather a change in metabolic pathways. Furthermore, once methane inhibition ceased the methanogen community, rumen metabolites and hydrogen emissions became similar between treatment groups, indicating that perhaps using the treatments tested in this study, it is not possible to imprint a low methane microbiota into the rumen in the solid feed of pre-weaned calves.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6768
Author(s):  
Matheus A.P. Cipriano ◽  
Afnan K.A. Suleiman ◽  
Adriana P.D. da Silveira ◽  
Janaína B. do Carmo ◽  
Eiko E. Kuramae

The use of residue of sugarcane ethanol industry named vinasse in fertirrigation is an established and widespread practice in Brazil. Both non-concentrated vinasse (NCV) and concentrated vinasse (CV) are used in fertirrigation, particularly to replace the potassium fertilizer. Although studies on the chemical and organic composition of vinasse and their impact on nitrous oxide emissions when applied in soil have been carried out, no studies have evaluated the microbial community composition and diversity in different forms of vinasse. We assessed the bacterial community composition of NCV and CV by non-culturable and culturable approaches. The non-culturable bacterial community was assessed by next generation sequencing of the 16S rRNA gene and culturable community by isolation of bacterial strains and molecular and biochemical characterization. Additionally, we assessed in the bacterial strains the presence of genes of nitrogen cycle nitrification and denitrification pathways. The microbial community based on16S rRNAsequences of NCV was overrepresented by Bacilli and Negativicutes while CV was mainly represented by Bacilli class. The isolated strains from the two types of vinasse belong to class Bacilli, similar toLysinibacillus, encode fornirKgene related to denitrification pathway. This study highlights the bacterial microbial composition particularly in CV what residue is currently recycled and recommended as a sustainable practice in sugarcane cultivation in the tropics.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1244 ◽  
Author(s):  
Qiaoyan Lin ◽  
Raju Sekar ◽  
Rob Marrs ◽  
Yixin Zhang

Across the world, there have been increasing attempts to restore good ecological condition to degraded rivers through habitat restoration. Microbial communities developing as biofilms play an important role in river ecosystem functioning by driving organic matter decomposition and ecosystem respiration. However, little is known about the structure and function of microbial communities in riverine systems and how these change when habitat restoration is implemented. Here, we compared the biofilm bacterial community composition using 16S rRNA genes targeted high-throughput Illumina Miseq sequencing in three river types, degraded urban rivers, urban rivers undergoing habitat restoration and forested rivers (our reference conditions). We aimed to determine: (i) the biofilm bacterial community composition affected by habitat restoration (ii) the difference in bacterial diversity in restored rivers, and (iii) correlations between environmental variables and bacterial community composition. The results showed that both water quality and biofilm bacterial community structure were changed by habitat restoration. In rivers where habitat had been restored, there was an increase in dissolved oxygen, a reduction in organic pollutants, a reduction in bacterial diversity and a related developing pattern of microbial communities, which is moving towards that of the reference conditions (forested rivers). River habitat management stimulated the processing of organic pollutants through the variation in microbial community composition, however, a big difference in bacterial structure still existed between the restored rivers and the reference forest rivers. Thus, habitat restoration is an efficient way of modifying the biofilm microbial community composition for sustainable freshwater management. It will, however, take a much longer time for degraded rivers to attain a similar ecosystem quality as the “pristine” forest sites than the seven years of restoration studied here.


2010 ◽  
Vol 77 (1) ◽  
pp. 302-311 ◽  
Author(s):  
Tatiana A. Vishnivetskaya ◽  
Jennifer J. Mosher ◽  
Anthony V. Palumbo ◽  
Zamin K. Yang ◽  
Mircea Podar ◽  
...  

ABSTRACTHigh concentrations of uranium, inorganic mercury [Hg(II)], and methylmercury (MeHg) have been detected in streams located in the Department of Energy reservation in Oak Ridge, TN. To determine the potential effects of the surface water contamination on the microbial community composition, surface stream sediments were collected 7 times during the year, from 5 contaminated locations and 1 control stream. Fifty-nine samples were analyzed for bacterial community composition and geochemistry. Community characterization was based on GS 454 FLX pyrosequencing with 235 Mb of 16S rRNA gene sequence targeting the V4 region. Sorting and filtering of the raw reads resulted in 588,699 high-quality sequences with lengths of >200 bp. The bacterial community consisted of 23 phyla, includingProteobacteria(ranging from 22.9 to 58.5% per sample),Cyanobacteria(0.2 to 32.0%),Acidobacteria(1.6 to 30.6%),Verrucomicrobia(3.4 to 31.0%), and unclassified bacteria. Redundancy analysis indicated no significant differences in the bacterial community structure between midchannel and near-bank samples. Significant correlations were found between the bacterial community and seasonal as well as geochemical factors. Furthermore, several community members within theProteobacteriagroup that includes sulfate-reducing bacteria and within theVerrucomicrobiagroup appeared to be associated positively with Hg and MeHg. This study is the first to indicate an influence of MeHg on thein situmicrobial community and suggests possible roles of these bacteria in the Hg/MeHg cycle.


Sign in / Sign up

Export Citation Format

Share Document