Effects of Magnetic Minerals Exposure and Microbial Responses in Surface Sediment Across Bohai Sea

Author(s):  
Lei Chen ◽  
Mingpeng Wang ◽  
Yuntao Li ◽  
Weitao Shang ◽  
Jianhui Tang ◽  
...  

Abstract Extensive production and application of magnetic minerals produce significant amounts of magnetic wastes to the environment. These magnetic minerals exposure could affect microbial community composition and geographic distribution. Here, we reported magnetic susceptibility is involved in determining bacterial α-diversity and community composition in surface sediment across Bohai Sea. Environmental factors (explained 9.80%) played a larger role than spatial variables (explained 6.72%) in conditioning the bacterial community composition. Exposure of magnetite center may shape geographical distribution of five dissimilatory iron reducing bacteria (DIRB). Microbial iron reduction ability and electroactive activity in sediment close to magnetite center are stronger than those far away. Our study provides novel understanding for response of DIRB and electroactive bacteria to magnetic minerals exposure.

2021 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Lei Chen ◽  
Mingpeng Wang ◽  
Yuntao Li ◽  
Weitao Shang ◽  
Jianhui Tang ◽  
...  

Extensive production and application of magnetic minerals introduces significant amounts of magnetic wastes into the environment. Exposure to magnetic minerals could affect microbial community composition and geographic distribution. Here, we report that magnetic susceptibility is involved in determining bacterial α-diversity and community composition in surface sediment across the Bohai Sea by high-throughput sequencing analysis of the 16S rRNA gene. The results showed that environmental factors (explained 9.80%) played a larger role than spatial variables (explained 6.72%) in conditioning the bacterial community composition. Exposure to a magnetite center may shape the geographical distribution of five dissimilatory iron reducing bacteria. The microbial iron reduction ability and electroactive activity in sediment close to a magnetite center are stronger than those far away. Our study provides a novel understanding for the response of DIRB and electroactive bacteria to magnetic minerals exposure.


2020 ◽  
Author(s):  
lei chen ◽  
Yuntao Li ◽  
Mingpeng Wang ◽  
Weitao Shang ◽  
Jianhui Tang ◽  
...  

Abstract Background: Microbial spatial distribution has been widely investigated in sediment. However, there is poorly available information on microbial distribution patterns in sediment of Bohai Sea coastal zone. Results: Here, we investigated the bacterial community composition and diversity in riverine and marine surface sediment around and in the Bohai Sea using high-throughput sequencing. Bacterial communities mainly comprised Proteobacteria, Bacteroidetes, and Firmicutes. Salinity, dissolved oxygen, pH, and magnetic susceptibility played the main role in determining bacterial α-diversity and community composition in this region. Of the total bacterial community composition variation, environmental factors (explained 29.41% of the total microbial community composition variation) played a more important role than spatial variables (explained 3.03%) in conditioning the bacterial community composition. Meanwhile, the significantly pure spatial effect and distance-decay tendency suggested that dispersal limitation was also an influential factor in shaping the bacterial biogeographical pattern. The presence of magnetite center might shape the geographical distribution of five genera Lactococcus, Clostridium, Caulobacter, Gillisia and Sphingomonas probably by affecting their iron-related geochemical cycle.Conclusion: Our results may provide a better understanding of present-day bacterial biogeography and the correlation between microbial communities and key environmental variables in a typical coastal area. Depending on these information, coastal resources could be efficiently predicted, assessed and used.


mSystems ◽  
2019 ◽  
Vol 4 (6) ◽  
Author(s):  
Holly L. Lutz ◽  
Elliot W. Jackson ◽  
Paul W. Webala ◽  
Waswa S. Babyesiza ◽  
Julian C. Kerbis Peterhans ◽  
...  

ABSTRACT Recent studies of mammalian microbiomes have identified strong phylogenetic effects on bacterial community composition. Bats (Mammalia: Chiroptera) are among the most speciose mammals on the planet and the only mammal capable of true flight. We examined 1,236 16S rRNA amplicon libraries of the gut, oral, and skin microbiota from 497 Afrotropical bats (representing 9 families, 20 genera, and 31 species) to assess the extent to which host ecology and phylogeny predict microbial community similarity in bats. In contrast to recent studies of host-microbe associations in other mammals, we found no correlation between chiropteran phylogeny and bacterial community dissimilarity across the three anatomical sites sampled. For all anatomical sites, we found host species identity and geographic locality to be strong predictors of microbial community composition and observed a positive correlation between elevation and bacterial richness. Last, we identified significantly different bacterial associations within the gut microbiota of insectivorous and frugivorous bats. We conclude that the gut, oral, and skin microbiota of bats are shaped predominantly by ecological factors and do not exhibit the same degree of phylosymbiosis observed in other mammals. IMPORTANCE This study is the first to provide a comprehensive survey of bacterial symbionts from multiple anatomical sites across a broad taxonomic range of Afrotropical bats, demonstrating significant associations between the bat microbiome and anatomical site, geographic locality, and host identity—but not evolutionary history. This study provides a framework for future systems biology approaches to examine host-symbiont relationships across broad taxonomic scales, emphasizing the need to elucidate the interplay between host ecology and evolutionary history in shaping the microbiome of different anatomical sites.


2003 ◽  
Vol 69 (2) ◽  
pp. 835-844 ◽  
Author(s):  
Wietse de Boer ◽  
Patrick Verheggen ◽  
Paulien J. A. Klein Gunnewiek ◽  
George A. Kowalchuk ◽  
Johannes A. van Veen

ABSTRACT Most soils inhibit fungal germination and growth to a certain extent, a phenomenon known as soil fungistasis. Previous observations have implicated microorganisms as the causal agents of fungistasis, with their action mediated either by available carbon limitation (nutrient deprivation hypothesis) or production of antifungal compounds (antibiosis hypothesis). To obtain evidence for either of these hypotheses, we measured soil respiration and microbial numbers (as indicators of nutrient stress) and bacterial community composition (as an indicator of potential differences in the composition of antifungal components) during the development of fungistasis. This was done for two fungistatic dune soils in which fungistasis was initially fully or partly relieved by partial sterilization treatment or nutrient addition. Fungistasis development was measured as restriction of the ability of the fungi Chaetomium globosum, Fusarium culmorum, Fusarium oxysporum, and Trichoderma harzianum to colonize soils. Fungistasis did not always reappear after soil treatments despite intense competition for carbon, suggesting that microbial community composition is important in the development of fungistasis. Both microbial community analysis and in vitro antagonism tests indicated that the presence of pseudomonads might be essential for the development of fungistasis. Overall, the results lend support to the antibiosis hypothesis.


2011 ◽  
Vol 77 (21) ◽  
pp. 7560-7567 ◽  
Author(s):  
Marketa Sagova-Mareckova ◽  
Marek Omelka ◽  
Ladislav Cermak ◽  
Zdenek Kamenik ◽  
Jana Olsovska ◽  
...  

ABSTRACTPlant and microbial community composition in connection with soil chemistry determines soil nutrient cycling. The study aimed at demonstrating links between plant and microbial communities and soil chemistry occurring among and within four sites: two pine forests with contrasting soil pH and two grasslands of dissimilar soil chemistry and vegetation. Soil was characterized by C and N content, particle size, and profiles of low-molecular-weight compounds determined by high-performance liquid chromatography (HPLC) of soil extracts. Bacterial and actinobacterial community composition was assessed by terminal restriction fragment length polymorphism (T-RFLP) and cloning followed by sequencing. Abundances of bacteria, fungi, and actinobacteria were determined by quantitative PCR. In addition, a pool of secondary metabolites was estimated byermresistance genes coding for rRNA methyltransferases. The sites were characterized by a stable proportion of C/N within each site, while on a larger scale, the grasslands had a significantly lower C/N ratio than the forests. A Spearman's test showed that soil pH was correlated with bacterial community composition not only among sites but also within each site. Bacterial, actinobacterial, and fungal abundances were related to carbon sources while T-RFLP-assessed microbial community composition was correlated with the chemical environment represented by HPLC profiles. Actinobacteria community composition was the only studied microbial characteristic correlated to all measured factors. It was concluded that the microbial communities of our sites were influenced primarily not only by soil abiotic characteristics but also by dominant litter quality, particularly, by percentage of recalcitrant compounds.


2007 ◽  
Vol 74 (3) ◽  
pp. 783-791 ◽  
Author(s):  
Valeria A. Torok ◽  
Kathy Ophel-Keller ◽  
Maylene Loo ◽  
Robert J. Hughes

ABSTRACT A high-throughput microbial profiling tool based on terminal restriction fragment length polymorphism was developed to monitor the poultry gut microbiota in response to dietary manipulations. Gut microbial communities from the duodena, jejuna, ilea, and ceca of 48 birds fed either a barley control diet or barley diet supplemented with exogenous enzymes for degrading nonstarch polysaccharide were characterized by using multivariate statistical methods. Analysis of samples showed that gut microbial communities varied significantly among gut sections, except between the duodenum and jejunum. Significant diet-associated differences in gut microbial communities were detected within the ileum and cecum only. The dissimilarity in bacterial community composition between diets was 73 and 66% within the ileum and cecum, respectively. Operational taxonomic units, representing bacterial species or taxonomically related groups, contributing to diet-associated differences were identified. Several bacterial species contributed to differences between diet-related gut microbial community composition, with no individual bacterial species contributing more than 1 to 5% of the total. Using canonical analysis of principal coordinates biplots, we correlated differences in gut microbial community composition within the ileum and cecum to improved performance, as measured by apparent metabolizable energy. This is the first report that directly links differences in the composition of the gut microbial community with improved performance, which implies that the presence of specific beneficial and/or absence of specific detrimental bacterial species may contribute to the improved performance in these birds.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kavita Kumari ◽  
Malay Naskar ◽  
Md. Aftabuddin ◽  
Soma Das Sarkar ◽  
Bandana Das Ghosh ◽  
...  

The ultimate role of prokaryote (bacteria and archaea), the decomposer of the wetland ecosystem, depends on its community structure and its interaction with the environment. The present study has used three universal prokaryote primers to compare prokaryote community structure and diversity of three distinctly different wetlands. The study results revealed that α-diversity indices and phylogenetic differential abundance patterns did not differ significantly among primers, but they did differ significantly across wetlands. Microbial community composition revealed a distinct pattern for each primer in each wetland. Overall comparison of prokaryote communities in sediments of three wetlands revealed the highest prokaryote richness and diversity in Bhomra (freshwater wetland) followed by Malencho (brackish-water wetland) and East Kolkata wetland (EKW) (sewage-fed wetland). Indicator genus analysis identified 21, 4, and 29 unique indicator genera, having preferential abode for Bhomra, EKW, and Malencho, respectively. Prediction of potential roles of these microbes revealed a preference for sulfate-reducing microbes in Malencho and methanogens in Bhomra. The distinct phylogenetic differential abundance pattern, microbial abode preference, and their potential functional role predict ecosystem variables shaping microbial diversity. The variation in community composition of prokaryotes in response to ecosystem variables can serve as the most sensitive bioindicator of wetland ecosystem assessment and management.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244616
Author(s):  
Jan-Niklas Macher ◽  
Martina Prazeres ◽  
Sarah Taudien ◽  
Jamaluddin Jompa ◽  
Aleksey Sadekov ◽  
...  

Foraminifera are a group of mostly marine protists with high taxonomic diversity. Species identification is often complex, as both morphological and molecular approaches can be challenging due to a lack of unique characters and reference sequences. An integrative approach combining state of the art morphological and molecular tools is therefore promising. In this study, we analysed large benthic Foraminifera of the genus Amphisorus from Western Australia and Indonesia. Based on previous findings on high morphological variability observed in the Soritidae and the discontinuous distribution of Amphisorus along the coast of western Australia, we expected to find multiple morphologically and genetically unique Amphisorus types. In order to gain detailed insights into the diversity of Amphisorus, we applied micro CT scanning and shotgun metagenomic sequencing. We identified four distinct morphotypes of Amphisorus, two each in Australia and Indonesia, and showed that each morphotype is a distinct genotype. Furthermore, metagenomics revealed the presence of three dinoflagellate symbiont clades. The most common symbiont was Fugacium Fr5, and we could show that its genotypes were mostly specific to Amphisorus morphotypes. Finally, we assembled the microbial taxa associated with the two Western Australian morphotypes, and analysed their microbial community composition. Even though each Amphisorus morphotype harboured distinct bacterial communities, sampling location had a stronger influence on bacterial community composition, and we infer that the prokaryotic community is primarily shaped by the microhabitat rather than host identity. The integrated approach combining analyses of host morphology and genetics, dinoflagellate symbionts, and associated microbes leads to the conclusion that we identified distinct, yet undescribed taxa of Amphisorus. We argue that the combination of morphological and molecular methods provides unprecedented insights into the diversity of foraminifera, which paves the way for a deeper understanding of their biodiversity, and facilitates future taxonomic and ecological work.


2020 ◽  
Vol 17 (20) ◽  
pp. 4961-4980
Author(s):  
Amandine Erktan ◽  
Matthias C. Rillig ◽  
Andrea Carminati ◽  
Alexandre Jousset ◽  
Stefan Scheu

Abstract. Microbes play an essential role in soil functioning including biogeochemical cycling and soil aggregate formation. Yet, a major challenge is to link microbes to higher trophic levels and assess consequences for soil functioning. Here, we aimed to assess how microbial consumers modify microbial community composition (PLFA markers), as well as C dynamics (microbial C use, SOC concentration and CO2 emission) and soil aggregation. We rebuilt two simplified soil consumer–prey systems: a bacterial-based system comprising amoebae (Acanthamoeba castellanii) feeding on a microbial community dominated by the free-living bacterium Pseudomonas fluorescens and a fungal-based system comprising collembolans (Heteromurus nitidus) grazing on a microbial community dominated by the saprotrophic fungus Chaetomium globosum. The amoeba A. castellanii did not affect microbial biomass and composition, but it enhanced the formation of soil aggregates and tended to reduce their stability. Presumably, the dominance of P. fluorescens, able to produce antibiotic toxins in response to the attack by A. castellanii, was the main cause of the unchanged microbial community composition, and the release of bacterial extracellular compounds, such as long-chained polymeric substances or proteases, in reaction to predation was responsible for the changes in soil aggregation as a side effect. In the fungal system, collembolans significantly modified microbial community composition via consumptive and non-consumptive effects including the transport of microbes on the body surface. As expected, fungal biomass promoted soil aggregation and was reduced in the presence of H. nitidus. Remarkably, we also found an unexpected contribution of changes in bacterial community composition to soil aggregation. In both the bacterial and fungal systems, bacterial and fungal communities mainly consumed C from soil organic matter (rather than the litter added). Increased fungal biomass was associated with an increased capture of C from added litter, and the presence of collembolans levelled off this effect. Neither amoebae nor collembolans altered SOC concentrations and CO2 production. Overall, the results demonstrated that trophic interactions are important for achieving a mechanistic understanding of biological contributions to soil aggregation and may occur without major changes in C dynamics and with or without changes in the composition of the microbial community.


Sign in / Sign up

Export Citation Format

Share Document