scholarly journals A New Model for Studying Nonlinear Vibration Behaviors of Gear-Bearing System

Author(s):  
Zi Wang ◽  
Caichao Zhu

Abstract A new model for nonlinear vibration behaviors of gear-bearing system is proposed in this work. For presenting the nonlinear excitation from bearing compliance, the enhanced bearing force excitation model containing two kinds of bearing stiffnesses, which are mean stiffness for the load transfer capacity and alternating stiffness for the disturbance resisting ability, is developed. Considering other dynamic excitations including mesh stiffness, contact pressure angle, center distance, unbalance force caused by static and dynamic eccentricity, an advanced iterative numerical method is introduced, which can timely and accurately update the excitations caused by load-dependent and time-varying nonlinearities inside of the system. The constant bearing stiffness and time-varying bearing alternating stiffness models are introduced and compared with the enhanced bearing excitation force model. The parametric resonant regions and system nonlinear periodic motion states are studied and compared for different bearing supporting models. The effects from internal and external excitations on the system nonlinear vibration behaviors are investigated.

Author(s):  
Yongzhen Liu ◽  
Yimin Zhang

When the ball bearing serving under the combined loading conditions, the ball will roll in and out of the loaded zone periodically. Therefore the bearing stiffness will vary with the position of the ball, which will cause vibration. In order to reveal the vibration mechanism, the quasi static model without raceway control hypothesis is modeled. A two-layer nested iterative algorithm based on Newton–Raphson (N-R) method with dynamic declined factors is presented. The effect of the dispersion of bearing parameters and the installation errors on the time-varying carrying characteristics of the ball-raceway contact and the bearing stiffness are investigated. Numerical simulation illustrates that besides the load and the rotating speed, the dispersion of bearing parameters and the installation errors have noticeable effect on the ball-raceway contact load, ball-inner raceway contact state and bearing stiffness, which should be given full consideration during the process of design and fault diagnosis for the rotor-bearing system.


Author(s):  
Kyosuke Ono

As an extension of the study presented in ISPS 2016, vibration characteristics of a commercially used head slider in hard disk drives at touchdown are analyzed by using a single degree-of-freedom (DOF) slider model, improved asperity adhesion force model, and air-bearing force model. Using parameter values at the head/disk interface, the total interfacial force was evaluated for various air bearing stiffness ratios r. Microwaviness (MW)-excited slider vibration was simulated near the boundary of instability onset (r = 2.4), and slight instability conditions at r = 2. It was found that the simulated results at r = 2.4 and 2 agree well with the touchdown vibrations of actual slider at ID and MD, respectively. The possibility of surfing recording is discussed.


Author(s):  
Nuntaphong Koondilogpiboon ◽  
Tsuyoshi Inoue

Abstract The effect of bearing length to diameter (L/D) ratio and large disk position on nonlinear vibration (limit cycle and bifurcation type) of a flexible rotor-bearing system is investigated. The rotor consists of a shaft modeled by 1-D finite elements (FE), two small disks and a large disk. It is supported by a self-aligning ball bearing and an axial-groove journal bearing with L/D ratio of 0.4 and 0.6. Two large disk positions: 340 and 575 mm measured from the ball bearing are investigated. The journal angular motion, which is essential for the highly flexible rotor but typically not considered in the previous nonlinear vibration literature; is considered in nonlinear bearing force calculation. The degrees of freedom (DOF) of the rotor-bearing system are reduced to those of the node that the nonlinear journal bearing force and moment act on by real mode component mode synthesis (CMS) that retains only the 1st forward and backward modes. Shooting method and Floquet multiplier analysis are applied to the reduced rotor-bearing system to obtain limit cycles and their stability of each bearing L/D ratio and large disk position case. Numerical results indicate that supercritical Hopf bifurcation only occurs in the case of L/D = 0.4 and large disk position 575 mm, otherwise subcritical occurs. However, if the typical bearing model that does not consider journal angular motion is used, the bifurcation type for the case of L/D = 0.6 with large disk position 575 mm will change to supercritical. Lastly, the experiments with the same L/D ratio and large disk position investigated in the calculation are performed as a validation. The experimental result of each case shows the same bifurcation type as the calculation result using the bearing model that considers the journal angular motion.


2020 ◽  
Vol 92 (4) ◽  
pp. 653-662
Author(s):  
Ying-Chung Chen ◽  
Tsung-Hsien Yang ◽  
Siu-Tong Choi

Purpose This paper aims to study a dynamic analysis of a double-helical geared rotor system with oil-film bearing. Design/methodology/approach A finite element model of a double-helical geared rotor system with oil-film bearing is developed, in which a rigid mass is used to represent the gear and the Timoshenko beam finite element represents the shaft; the equations of motion are obtained by applying Lagrange’s equation. Natural frequencies, Campbell diagram, lateral responses, axial responses, bearing stiffness coefficients, bearing damping coefficients and bearing force are investigated. Findings Natural frequencies and Campbell diagram of a double-helical geared rotor system with oil-film bearing are investigated. An increased helical angle enhanced the axial response of the system and reduced its lateral response. The distance between the node and bearing affected the lateral response magnitude on the node. The farther away the gear pair was from the central part of the shaft, the higher the system’s resonance frequency became. The different gear pair position has a significant influence on the bearing stiffness coefficient and bearing force, but it just has a little effect on the bearing damping coefficient. Practical implications The model of a double-helical geared rotor system with oil-film bearing is established in this paper. The dynamic characteristics of a double-helical geared rotor system with oil-film bearing are investigated. The numerical results of this study can be used as a reference for subsequent personnel research. Originality/value Although the dynamics characteristics of geared rotor bearing system have been reported in some literature, the dynamic analysis of a double-helical geared rotor-bearing system is still rarely investigated. This paper showed some novel results that lateral and axial response results are obtained by the different helical angle and different gear positions. In the future, it makes valuable contributions for further development of dynamic analysis of a double-helical geared rotor-bearing system.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Mohammad Miraskari ◽  
Farzad Hemmati ◽  
Mohamed S. Gadala

To determine the bifurcation types in a rotor-bearing system, it is required to find higher order derivatives of the bearing forces with respect to journal velocity and position. As closed-form expressions for journal bearing force are not generally available, Hopf bifurcation studies of rotor-bearing systems have been limited to simple geometries and cavitation models. To solve this problem, an alternative nonlinear coefficient-based method for representing the bearing force is presented in this study. A flexible rotor-bearing system is presented for which bearing force is modeled with linear and nonlinear dynamic coefficients. The proposed nonlinear coefficient-based model was found to be successful in predicting the bifurcation types of the system as well as predicting the system dynamics and trajectories at spin speeds below and above the threshold speed of instability.


2003 ◽  
Vol 56 (3) ◽  
pp. 309-329 ◽  
Author(s):  
Jianjun Wang ◽  
Runfang Li and ◽  
Xianghe Peng

In this paper, the progress in nonlinear dynamics of gear driven systems in the past twenty years is reviewed, especially the gear dynamic behavior, by considering the backlash and time-varying mesh stiffness of teeth. The basic concepts, the mathematical models and the solving methods for the non-linear dynamics of geared systems are then reviewed. The critical issues for further research on the nonlinear vibration in gear transmission systems are also discussed. There are 204 references cited in this review article.


Author(s):  
Yifu Zhou ◽  
Zhong Luo ◽  
Zifang Bian ◽  
Fei Wang

As sophisticated mechanical equipment, the rotor system of aero-engine is assembled by various parts; bolted flange joints are one of the essential ways of joints. Aiming at the analysis of the nonlinear vibration characteristics of the rotor-bearing system with bolted flange joints, in this paper, a finite element modeling method for a rotor-bearing system with bolted flange joints is proposed, and an incremental harmonic balance method combined with arc length continuation is proposed to solve the dynamic solution of the rotor system. In order to solve the rotor system with rolling bearing nonlinearity, the alternating frequency/time-domain process of the rolling bearing element is deduced. Compared with the conventional harmonic balance method and the time-domain method, this method has the characteristics of fast convergence and high computational efficiency; solving the rotor system with nonlinear bearing force; overcome the shortcoming that the frequency–response curve of the system is too sharp to continue solving. By using this method, the influence of bearing clearance and stiffness on vibration characteristics of the rotor system with bolted flange joints is studied. The evolution law of the state of the rotor system with bolt flange is investigated through numerical simulation and experimental data. The results indicated that the modeling and solving method proposed in this paper could accurately solve the rotor-bearing system with bolted flange joints and analyze its vibration characteristics.


Sign in / Sign up

Export Citation Format

Share Document