scholarly journals Hand-held Dual-particle Imager Implemented with a Multiplexed Low Sampling-rate Readout of a SiPM-based Pixelated Stilbene Array

Author(s):  
Jihwan Boo ◽  
Mark Hammig ◽  
Manhee Jeong

Abstract Dual particle imaging, in which both neutrons and gamma-rays in the environment can be individually characterized, is particularly attractive for monitoring mixed radiation emitters such as special nuclear materials (SNM). Typical dual particle imagers (DPIs) are not readily deployable and easily portable for hand-held applications because they are implemented using bulky single-crystal scintillators and photomultiplier tubes (PMTs) implemented with a 1:1 channel readout. Effective SNM localization and detection also benefits from high instrument sensitivity so that real-time imaging or imaging with a limited number of acquired events is enabled. We have developed a hand-held type DPI equipped with a pixelated stilbene-silicon photomultiplier (SiPM) array module and low sampling-rate analog-to-digital converters (ADCs) processed via a multiplexed readout. The stilbene-SiPM array (12 × 12 pixels) is capable of effectively performing pulse shape discrimination (PSD) between gamma-ray and neutron events and neutron/gamma-ray source localization on the imaging plane, as demonstrated with 252Cf neutron/gamma and 137Cs gamma-ray sources. The low sampling rate ADCs connected to the stilbene-SiPM array module result in a compact instrument with high sensitivity that provides a gamma-ray image of a 137Cs source, producing 6.4 μR/h at 1 m, in less than 69 seconds. A neutron image for a 3.5 × 105 n/s 252Cf source can also be obtained in less than 6 minutes at 1 m from the center of the system. The instrument images successfully with field of view of 50° and provides angular resolution of 6.8°.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jihwan Boo ◽  
Mark D. Hammig ◽  
Manhee Jeong

AbstractDual particle imaging, in which both neutrons and gamma-rays in the environment can be individually characterized, is particularly attractive for monitoring mixed radiation emitters such as special nuclear materials (SNM). Effective SNM localization and detection benefits from high instrument sensitivity so that real-time imaging or imaging with a limited number of acquired events is enabled. For portable applications, one also desires a dual particle imager (DPI) that is readily deployable. We have developed a hand-held type DPI equipped with a pixelated stilbene-silicon photomultiplier (SiPM) array module and low sampling-rate analog-to-digital converters (ADCs) processed via a multiplexed readout. The stilbene-SiPM array (12 × 12 pixels) is capable of effectively performing pulse shape discrimination (PSD) between gamma-ray and neutron events and neutron/gamma-ray source localization on the imaging plane, as demonstrated with 252Cf neutron/gamma and 137Cs gamma-ray sources. The low sampling rate ADCs connected to the stilbene-SiPM array module result in a compact instrument with high sensitivity that provides a gamma-ray image of a 137Cs source, producing 6.4 μR/h at 1 m, in less than 69 s. A neutron image for a 3.5 × 105 n/s 252Cf source can also be obtained in less than 6 min at 1 m from the center of the system. The instrument images successfully with field of view of 50° and provides angular resolution of 6.8°.


2021 ◽  
Vol 46 (3) ◽  
pp. 112-119
Author(s):  
Hyun Suk Kim ◽  
Jooyub Lee ◽  
Sanghun Choi ◽  
Young-bong Bang ◽  
Sung-Joon Ye ◽  
...  

Background: This work aims to develop a new imaging system based on a pulse shape discrimination-capable Cs2LiYCl6:Ce (CLYC) scintillation detector combined with the rotational modulation collimator (RMC) technique for dual-particle imaging.Materials and Methods: In this study, a CLYC-based RMC system was designed based on Monte Carlo simulations, and a prototype was fabricated. Therein, a rotation control system was developed to rotate the RMC unit precisely, and a graphical user interface-based software was also developed to operate the data acquisition with RMC rotation. The RMC system was developed to allow combining various types of collimator masks and detectors interchangeably, making the imaging system more versatile for various applications and conditions.Results and Discussion: Operational performance of the fabricated system was studied by checking the accuracy and precision of the collimator rotation and obtaining modulation patterns from a gamma-ray source repeatedly.Conclusion: The prototype RMC system showed reliability in its mechanical properties and reproducibility in the acquisition of modulation patterns, and it will be further investigated for its dual-particle imaging capability with various complex radioactive source conditions.


Author(s):  
O.V. Banzak ◽  
O.V. Sieliykov ◽  
M.V. Olenev ◽  
S.V. Dobrovolskaya ◽  
O.I. Konovalenko

When considering methods of combating the illicit circulation of nuclear materials, it is necessary to detect trace amounts of materials, and in many cases not to seize them immediately, but to establish the place of storage, processing, routes of movement, etc. As a result, there is a new demand for isotope identification measurements to meet a wide range of different requirements. Measurements should be carried out in the field in a short time, when results need to be obtained within tens of seconds. The devices with which the personnel work should be small and low-background. Such requirements appear when working to identify cases of illegal trade in nuclear materials and radioactive sources, as well as when solving radiation protection problems and when handling radioactive devices and waste. In this work, new generation radiation sensors and measuring systems based on them have been created, which open up previously unknown possibilities in solving problems of nuclear fuel analysis, increasing the accuracy and efficiency of monitoring technological parameters and the state of protective barriers in nuclear power plants, and creating means for IAEA inspections. For the first time a portable digital gamma-ray spectrometer for radiation reconnaissance in the field was developed and created. Distinctive features of such devices are: The analysis showed that the required value of error due to energy dependence of the sensitivity can be achieved using, for example, Analog Devices 10-bit AD9411 ADCs with a sampling rate of 170 MHz. The number of quantization levels is determined by the requirement to measure the dose rate of gamma radiation with an energy of at least 10 keV. This minimum energy corresponds to the use of 10-bit ADCs. On the basis of the developed model, an ionizing radiation detector for dosimetry was created. Its fundamental difference from known devices is the use of CdZnTe crystals as a primary gamma-ray converter (sensor). The advantages of such a solution, proved by previous studies, made it possible to create a detector with: high resolution, no more than 40 keV; a wider dynamic range of values of the recorded radiation dose rate - from background to emergency operating modes of the reactor; lower value of the energy equivalent of noise.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1051
Author(s):  
Luís Marques ◽  
Alberto Vale ◽  
Pedro Vaz

In the last decade, the development of more compact and lightweight radiation detection systems led to their application in handheld and small unmanned systems, particularly air-based platforms. Examples of improvements are: the use of silicon photomultiplier-based scintillators, new scintillating crystals, compact dual-mode detectors (gamma/neutron), data fusion, mobile sensor networks, cooperative detection and search. Gamma cameras and dual-particle cameras are increasingly being used for source location. This study reviews and discusses the research advancements in the field of gamma-ray and neutron measurements using mobile radiation detection systems since the Fukushima nuclear accident. Four scenarios are considered: radiological and nuclear accidents and emergencies; illicit traffic of special nuclear materials and radioactive materials; nuclear, accelerator, targets, and irradiation facilities; and naturally occurring radioactive materials monitoring-related activities. The work presented in this paper aims to: compile and review information on the radiation detection systems, contextual sensors and platforms used for each scenario; assess their advantages and limitations, looking prospectively to new research and challenges in the field; and support the decision making of national radioprotection agencies and response teams in respect to adequate detection system for each scenario. For that, an extensive literature review was conducted.


1994 ◽  
Vol 144 ◽  
pp. 635-639
Author(s):  
J. Baláž ◽  
A. V. Dmitriev ◽  
M. A. Kovalevskaya ◽  
K. Kudela ◽  
S. N. Kuznetsov ◽  
...  

AbstractThe experiment SONG (SOlar Neutron and Gamma rays) for the low altitude satellite CORONAS-I is described. The instrument is capable to provide gamma-ray line and continuum detection in the energy range 0.1 – 100 MeV as well as detection of neutrons with energies above 30 MeV. As a by-product, the electrons in the range 11 – 108 MeV will be measured too. The pulse shape discrimination technique (PSD) is used.


1987 ◽  
Vol 48 (C9) ◽  
pp. C9-367-C9-370
Author(s):  
C. B. COLLINS ◽  
F. DAVANLOO ◽  
T. S. BOWEN ◽  
J. J. COOGAN
Keyword(s):  

2012 ◽  
Vol 36 (4) ◽  
pp. 334-338 ◽  
Author(s):  
Fei Jia ◽  
Yong-Wei Dong ◽  
Jun-Ying Chai ◽  
Jiang-Tao Liu ◽  
Bo-Bing Wu ◽  
...  

1979 ◽  
Vol 47 (6) ◽  
pp. 1228-1233 ◽  
Author(s):  
D. S. Simon ◽  
J. F. Murray ◽  
N. C. Staub

We evaluated the attenuation of the 122 keV gamma ray of cobalt-57 across the thorax of anesthetized dogs as a method for following the time course of lung water changes in acute pulmonary edema induced by either increased microvascular permeability or increased microvascular hydrostatic pressure. The gamma rays traversed the thorax centered on the seventh rib laterally where the lung mass in the beam path was greatest. Calibration measurements in isolated lung lobes demonstrated the high sensitivity and inherent accuracy of the method over a wide range of lung water contents. In control dogs reproducibility averaged +/-3%. Increased permeability edema led to large rapid increases in the transthoracic gamma ray attenuation (TGA), while increased pressure caused an immediate, modest increase in TGA (vascular congestion) followed by a slow further increase over 2 h. There was a fairly good correlation between the increase in extravascular lung water and the change in TGA. The method is simple, safe, and noninvasive and appears to be useful for following the time course of lung water accumulation in generalized lung edema in anesthetized animals.


Sign in / Sign up

Export Citation Format

Share Document